Data Analitik Audit: Kontribusi Dan Hambatan Pada Praktik Audit
Abstract
The aim of the study is to determine the contributions and barriers to the use of audit analytical data in audit practice. This study method uses a Systematic Literature Review (SLR) with a bibliometric approach from several relevant journals. The study results reveal that the use of audit analytical data has a positive impact on audit practice, but there are obstacles or barriers to its use such as cognitive bias, inadequate understanding of the use of technology, and implementation costs.
Keywords
Full Text:
PDFReferences
Guide to Audit Data Analytics, (2018). https://doi.org/https://doi.org/10.1002/9781119499770.fmatter
Aboud, A., Robinson, B., & Ireland, B. D. O. (2020). Fraudulent financial reporting and data analytics: an explanatory study from Ireland reporting. Accounting Research Journal, 35(1), 21–36. https://doi.org/10.1108/ARJ-04-2020-0079
Acciarini, C., Brunetta, F., & Boccardelli, P. (2021). Cognitive biases and decision- making strategies in times of change : a systematic literature review. Management Decision, 59(3), 638–652. https://doi.org/10.1108/MD-07-2019-1006
AICPA, A. I. of C. P. A. (2017). Guide to audit data analytics. AICPA. https://doi.org/https://doi.org/10.1002/9781119499770.ch1
Álvarez-foronda, R., De-pablos-heredero, C., Danvila, I., & Valle, D. (2023). Implementation model of data analytics as a tool for improving internal audit processes. Frontiers in Physiology, 14, 1–10. https://doi.org/10.3389/fpsyg.2023.1140972
Austin, A. A., Carpenter, T. D., Christ, M. H., Christensen, T., Demere, P., Fitzgerald, B., Hammersley, J., Hoang, K., Pickerd, J., Stein, S., Winchel, J., & Special, J. Z. (2021). The Data Analytics Journey: Interactions among Auditors, Managers, Regulation, and Technology ASHLEY A. AUSTIN,. Contemporary Accounting Research, 38(3), 1888–1924. https://doi.org/10.1111/1911-3846.12680
Betti, N., & Sarens, G. (2021). Understanding the internal audit function in a digitalised business environment. Journal of Accounting and Organizational Change, 17(2), 197–216. https://doi.org/10.1108/JAOC-11-2019-0114
Brazel, J. F., Ehimwenma, E., & Koreff, J. (2022). Do Different Data Analytics Impact Auditors’ Decisions? Current Issues in Auditing, 16(2), P24–P38. https://doi.org/10.2308/CIIA-2021-031
Buchheit, S., & Riley, M. E. (2020). Firms: Is Slow Technology Adoption. Current Issue in Auditing, 14(2), 15–24. https://doi.org/10.2308/CIIA-2019-501
Chang, C. J., & Luo, Y. (2021). Data visualization and cognitive biases in audits. Managerial Auditing Journal, 36(1), 1–16. https://doi.org/10.1108/MAJ-08-2017-1637
Christensen, B. E., Glover, S. M., Omer, T. C., & Shelley, M. K. (2016). Understanding Audit Quality: Insights from Audit Professionals and Investors. Contemporary Accounting Research, 33(4), 1648–1684. https://doi.org/10.1111/1911-3846.12212
DeAngelo, L. E. (1981). Auditor size and audit quality. Journal of Accounting and Economics, 3, 183–199.
Defond, M., & Zhang, J. (2014). A review of archival auditing research. Journal of Accounting and Economics, 58, 275–326. https://doi.org/10.1016/j.jacceco.2014.09.002
Ditkaew, K., & Suttipun, M. (2023). The impact of audit data analytics on audit quality and audit review continuity in Thailand. Asian Journal of Accounting Research, 8(3), 269–278. https://doi.org/10.1108/AJAR-04-2022-0114
Gepp, A., Linnenluecke, M. K., Neill, T. J. O., & Smith, T. (2018). Big data techniques in auditing research and practice : Current trends and future opportunities. Journal of Accounting Literature, 40, 102–115. https://doi.org/10.1016/j.acclit.2017.05.003
Hezam, Y. A. A., Anthonysamy, L., & Suppiah, S. D. K. (2023). Big Data Analytics and Auditing: A Review and Synthesis of Literature. Emerging Science Journal, 7(2), 629–642. https://doi.org/10.28991/ESJ-2023-07-02-023
Huang, F., Gyun, W., Vasarhelyi, M. A., & Yan, Z. (2022). Audit data analytics, machine learning, and full population testing. The Journal of Finance and Data Science, 8, 138–144. https://doi.org/10.1016/j.jfds.2022.05.002
Koreff, J., Weisner, M., & Sutton, S. G. (2021). International Journal of Accounting Data analytics ( ab ) use in healthcare fraud audits. International Journal of Accounting Information Systems, 42(May), 100523. https://doi.org/10.1016/j.accinf.2021.100523
Krieger, F., Drews, P., & Velte, P. (2021). Explaining the (non-) adoption of advanced data analytics in auditing: A process theory. International Journal of Accounting Information Systems, 41, 100511. https://doi.org/10.1016/j.accinf.2021.100511
Lee, C. J., Liu, C., & Wang, T. (1999). The 150-hour rule. Journal of Accounting and Economics, 27, 203–228. https://doi.org/https://doi.org/10.1016/S0165-4101(99)00010-5
Li, H., Dai, J., Gershberg, T., & Vasarhelyi, M. A. (2018). Understanding usage and value of audit analytics for internal auditors : An organizational approach. International Journal of Accounting Information Systems, 28(November 2017), 59–76. https://doi.org/10.1016/j.accinf.2017.12.005
Mckee, T. E. (2021). Analyzing An Audit Population Via Either Excel Pivot Tables and/or R Language Cluster Analysis. Current Issue in Auditing, 15(1), 1–14. https://doi.org/10.2308/CIIA-2019-502
Michael, A., & Dixon, R. (2019). Audit data analytics of unregulated voluntary disclosures and auditing expectations gap. International Journal of Disclosure and Governance, 16(4), 188–205. https://doi.org/10.1057/s41310-019-00065-x
Midway, S. R. (2020). Principles of Effective Data Visualization. Patterns, 1(9), 100141. https://doi.org/10.1016/j.patter.2020.100141
Pedrosa, I., Costa, C. J., Aparicio, M., & Costa, C. J. (2019). Determinants adoption of computer assisted auditing tools ( CAATs ). Cognition, Technology & Work, 4(Ahmi 2012). https://doi.org/10.1007/s10111-019-00581-4
Rakipi, R., De Santis, F., & D’Onza, G. (2021). Correlates of the internal audit function’s use of data analytics in the big data era: Global evidence. Journal of International Accounting, Auditing and Taxation, 42, 100357. https://doi.org/10.1016/j.intaccaudtax.2020.100357
Reinsel, D., Gantz, J., & Rydning, J. (2018). The Digitization of the World From Edge to Core Mankind is on a quest to digitize the world (Issue November). https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
Sanoran, K., & Ruangprapun, J. (2023). Initial Implementation of Data Analytics and Audit Process Management. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15031766
DOI: https://doi.org/10.30743/akutansi.v10i2.8572
Refbacks
- There are currently no refbacks.
JRAM (Jurnal Riset Akuntansi Multiparadigma)
Fakultas Ekonomi Universitas Islam Sumatera Utara
Jl. Sisingamangaraja, Teladan-Medan Indonesia 20217
Telp. (061) 7869880 | fax. (061) 7869880
Email: admin.jram@fe.uisu.ac.id