Optimasi Variasi Sumber Karbon dan Nitrogen Isolat Bakteri Endofitik dari Tanaman Bruguiera gymnorrhiza dalam Menghasilkan Crude Enzim Protease

Anthoni Agustien, Yetti Marlida, Miftahul Zovia

Abstract


Enzim protease merupakan salah satu enzim komersial yang memiliki berbagai manfaat dan aplikasi pada bidang industri. Enzim protease dapat dihasilkan oleh mikroorganisme dan dapat dilakukan optimasi untuk menghasilkan aktivitas enzim yang optimum. Tujuan penelitian adalah untuk mengetahui jenis sumber karbon dan sumber nitrogen terbaik dalam menghasilkan enzim protease. Penelitian ini dilakukan dengan metode eksperimen menggunakan beberapa variasi jenis sumber karbon dan nitrogen untuk melihat aktivitas enzim protease melalui ekstrak kasar enzim (crude enzyme extract) yang dihasilkan. Hasil didapatkan dari  penelitian ini adalah sumber karbon yang terbaik berupa maltosa, sedangkan sumber nitrogen terbaik merupakan kalium nitrat (KNO3) konsentrasi 1% (v/v), dengan aktivitas protease sebesar 1,136 U/mL

Keywords


Bakteri, Endofitik, Karbon, Nitrogen, Protease

Full Text:

PDF

References


Agustien, A., Melhanza, Z. N., Annisa, A., Husnah, Q., Nasir, N., & Rilda, Y. (2018). Isolation and Screening Protease Acid, Neutral and Alkaline Producing Bacteria from Dadih (Traditional Indonesian Food). Available Online Www.Jocpr.Com Journal of Chemical and Pharmaceutical Research, 10(1), 50–54. www.jocpr.com

Agustien, A., Muqarramah, M., & Alamsjah, F. (2024). Optimization and Molecular Identification of Protease-Producing Thermophilic Bacterial Isolate TUA-26. OnLine Journal of Biological Sciences, 24(3), 321–329.

Agwa, O. K., & Abu, G. O. (2016). Influence of various nitrogen sources on biomass and lipid production by Chlorella vulgaris. British Biotechnology Journal, 15(2), 1–13.

Aznia, A., Agustien, A., Nasril, D., Laboratorium, N., Mikrobiologi, R., & Biologi, J. (2014). Optimasi Parsial Isolat Termofilik M5-24 dalam Produksi Protease Partial Optimization of Thermophilic Isolate M5-24 on Protease Production. Jurnal Biologi Universitas Andalas (J. Bio. UA.), 3(3), 238–243.

Bezawada, J., Yan, S., John, R. P., Tyagi, R. D., & Surampalli, R. Y. (2010). Augmentation of protease production by supplementing carbon and nitrogen sources into wastewater sludge medium. JOURNAL OF RESIDUALS SCIENCE & TECHNOLOGY, 7(3), 161–172.

Gurumallesh, P., Alagu, K., Ramakrishnan, B., & Muthusamy, S. (2019). A systematic reconsideration on proteases. In International Journal of Biological Macromolecules (Vol. 128, pp. 254–267). Elsevier B.V.

Lestari, K., Agustien, A., & Djamaan, A. (2019). Potensi Jamur Endofit pada Tumbuhan Mangrove Avicennia marina di Kuala Enok Indragiri Hilir sebagai Penghasil Antibiotika The Potential of Endophytic Fungi Isolated from Leaves, Stems, Mangrove Roots Avicennia marina as a Producer of Antibiotics. JURNAL METAMORFOSA, 6(1), 83–89.

Malathi, S., & Chakraborty, R. (1991). Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent. Applied and Environmental Microbiology, 57(3), 712–716.

Nelson, J. W., Atilho, R. M., Sherlock, M. E., Stockbridge, R. B., & Breaker, R. R. (2017). Metabolism of free guanidine in bacteria is regulated by a widespread riboswitch class. Molecular Cell, 65(2), 220–230.

Qu, X. M., Wu, Z. F., Pang, B. X., Jin, L. Y., Qin, L. Z., & Wang, S. L. (2016). From Nitrate to Nitric Oxide: The Role of Salivary Glands and Oral Bacteria. Journal of Dental Research, 95(13), 1452–1456. https://doi.org/10.1177/0022034516673019

Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., & Ashraf, M. (2019). Microbial proteases applications. In Frontiers in Bioengineering and Biotechnology (Vol. 7, Issue JUN). Frontiers Media S.A. https://doi.org/10.3389/fbioe.2019.00110

Saier Jr, M. H., Reddy, V. S., Tsu, B. V, Ahmed, M. S., Li, C., & Moreno-Hagelsieb, G. (2016). The transporter classification database (TCDB): recent advances. Nucleic Acids Research, 44(D1), D372–D379.

Santosa, E., Halimah, S., Susila, A. D., Lonto, A. P., Mine, Y., & Sugiyama, N. (2013). KNO 3 Application Affect Growth and Production of Amorphophallus muelleri Blume. Indonesian Journal of Agronomy, 41(3).

Sher, M. G., Nadeem, M., Syed, Q., Irfan, M., & Baig, S. (2012). Protease production from UV mutated Bacillus subtilis. Bangladesh Journal of Scientific and Industrial Research, 47(1), 69–76.

Silva, C. R. da, Delatorre, A. B., & Martins, M. L. L. (2007). Effect of the culture conditions on the production of an extracellular protease by thermophilic Bacillus sp and some properties of the enzymatic activity. Brazilian Journal of Microbiology, 38, 253–258.

Springer-Verlag, ©, Takami, H., Akiba, T., & Horikoshi, K. (1989). Applied Microbiology Biotechnology Production of extremely thermostable alkaline protease from Bacillus sp. no. AH-101. In Appl Microbiol Biotechnol (Vol. 30).

Sun, Y., Qian, Y., Zhang, J., Wang, Y., Li, X., Zhang, W., Wang, L., Liu, H., & Zhong, Y. (2021). Extracellular protease production regulated by nitrogen and carbon sources in Trichoderma reesei. Journal of Basic Microbiology, 61(2), 122–132.

Sutay Kocabaş, D., & Grumet, R. (2019). Evolving regulatory policies regarding food enzymes produced by recombinant microorganisms. In GM Crops and Food (Vol. 10, Issue 4, pp. 191–207). Taylor and Francis Ltd.

Tsuchiya, K., Sakashita, H., Nakamura, Y., & Kimura, T. (1991). Production of thermostable alkaline protease by alkalophilic Thermoactinomyces sp. HS682. Agricultural and Biological Chemistry, 55(12), 3125–3127




DOI: https://doi.org/10.30743/best.v7i2.9705

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

 

https://scholar.google.co.id/citations?user=kvKzX3QAAAAJ&hl=id&authuser=4

Best Journal (Biology Education, Sains and Technology)

Program Studi Pendidikan Biologi, FKIP - Universitas Islam Sumatera Utara
Kampus Induk UISU Jl. Sisingamangaraja XII Teladan, Medan

Creative Commons License