ANALISA KEGAGALAN PADA KNALPOT SEPEDA MOTOR CUP 70 MENGGUNAKAN METODE TENSILE TEST (PENGUJIAN TARIK)

Joko Prasetyo, Junaidi

Program Studi Teknik Mesin, Fakultas Teknik, Universitas Harapan Medan <u>jokoprasetyo@_gmail.com; junaidi@unhar.ac.id</u>

Abstrak

Knalpot adalah alat peredam kebisingan pada kendaraan, apakah itu mobil, sepeda motor, dan lain sebagainya. Dengan sifat pada masing-masing material berbeda, maka banyak metode untuk menguji sifat apa sajakah yang di miliki oleh suatu material tersebut. Uji tarik merupakan salah satu metode yang di gunakan untuk mengetahui kekuatan tarik pada material, dan bagaimana bentuk struktur pada knalpot tersebut. Oleh karena itu uji tarik dan uji struktur banyak di pakai dalam bidang menguji sifat mekanik yan di miliki oleh suatu material tersebut. Metode yang digunakan dalam penelitian ini adalah metode pengujian tarik menggunakan mesin UTM. Material testing machinedengan panjang 110 mm menggunakan ASTM E8. Hasil penelitian memiliki spesimen untuk spesimen yang pertama pada knalpot memiliki tengangan tarik dengan nilai 8,02 Mpa regangan tarik dengan nilai 0,01 dan modus elastisitas dengan nilai 802,08 Mpa spesimen kedua pada knalpot memiliki tegangan tarik dengan nilai 7,89 Mpa rengangan tarik dengan nilai 0,03 dan modulus elastisitas dengan nilai 263,4 Mpa spesimen ketiga pada knalpot memiliki tegangan tarik dengan nilai 8,59 Mpa rengangan tarik dengan nilai 0,01 dan modulus elastisitas dengan nilai 859,37 Mpa spesimen keempat pada knlapot memiliki tengangan tarik dengan nilai 10,2 Mpa rengangan tarik dengan nilai 0,04 dan modulus elastisitas dengan nilai 256,21 Mpa spesimen kelima pada knalpot memiliki tegangan tarik dengan nilai 12,2 Mpa regangan tartik dengan nilai 0,05 dan modulus elastisitas dengan nilai 244,43 Mpa

Kata-Kata Kunci: Knalpot, Uji Tarik, Tengangan Tarik, Regangan Tarik, Modulus elastisitas

I. Pendahuluan

Knalpot adalah alat peredam kebisingan pada kendaraan, apakah itu mobil, sepeda motor, dan lain sebagainya. Untuk tujuan tersebut maka knalpot dirancang sedemikian rupa agar suara yang keluar tidak begitu keras dalam artian mampu menyerap bising yang dihasilkan oleh motor bakar penggerak. Salah satu penyebab kebisingan di kota – kota besar di akibatkan oleh suara kendaraan bermotor (khususnya di Indonesia sepeda motor) yang jumlahnya sangat banyak. Oleh karena itu kajian kajian knalpot yang mampu memberikan tingkat peredaman suara yang besar, terus dilakukan untuk mencari solusia altenartif. Di dalam suartu komponen terhadap material salah 1 (satunya) knlapot cup 70, knalpot itu sendiri memiliki komponen utama yaitu pipa yang di gunakan untuk mensirkulasikan gas buang dari pipa itu sendiri terbuat dari material besi, pada proses pengoperasian knalpot, maka knlapot yang ada di dalam dapur bakar knlapot mengalamin perubahan suhu yang mengakibatkan terjadi nya deformasi yang mengakibatkan perubahan sifat mekanik dari material knlapot tersebut

Dalam penelitian ini penulisan hanya membahas tentang Rantai timing tentang Knalpot sepeda motor cup 70 dengan metode uji tarik (Tensile Test) sehubung latar belakang permasalahan diatas adalah masalah pokok yang menjadi fokus pembahasan dalam penelitian ini adalah perhitungan nilai tegangan, regangan dan modulus elastisitas sebuah rantai timing sepeda motor cuo 70. Tujuan penulisan tugas sarjana ini adalah untuk mengetahui nilai uji tarik rantai timing

dengan metode uji tarik (Tensile Test) pada mesin uji tarik sebagai langkah awal penerapan (Tensile Test) melakukan analisis terhadap rantai timing sepeda motor cup 70 menjadi prioritas utama.

Analisa kegagalan merupakan salah satu teknik analisa yang saat ini berkembang. Tujuan analisa ini adalah untuk mengetahui penyebab terjadinya kerusakan yang spesifik dan peralatan, perlengkapan, proses dan material baku yang digunakan serta untuk menentukan tindakan pencegahan agar kerusakan tidak terulang. Untuk jangka pendek diharapkan dapat memperbaiki design dan memperbaikin proses serta metoda fabrikasi, sedangkan untuk jangka panjangnya dapat dipakai pengembangan material dan sebagai metoda untuk evaluasi dan memprediksi performance material serta untuk memperbaiki sistem pemeliharaan. Faktor yang berhubungan dengan analisa kegagalan biasanya disebabkan oleh 4 faktor vaitu:

- 1. Seleksi material kegagalan yang terjadi karna seleksi material yang terburu-buru, merupakan hal yang sering terjadi pada plastik atau industri lainya. Data pemilihan matrial yang tidak mencukupi atau tidak lengkap.
- 2. Desain kriteria yang meleset dari kondisi operasi yang sebenarnya beban, lingkungan, suhu operasi.
- 3. Proses forming dapat menimbulkan tegangan sisa, retak mikro. Maching dan griding juga menimbulkan tegangan sisa dan permustantengangan akibat kekasaran permukaan. Heat tratment dapat menyebabkan dekarburisasi (permukaan baja menjadi lunak)

- distorsi dan bahkan retak akibat proses celup cepat (quenching).
- 4. Kondisi service merupakan sudah ada label peringatan mengenai keamanan dan intruksi penggunaan, kegagalan karena kondisi service seringkali terjadi pada produk. Lima katagori service yang tidak disegaja antara lain:
 - a. Pemakaian produk yang tidak tepat.
 - b. Penggunaan produk melebihi masa penggunaan (life time)
 - c. Kegagalan karena kondisi service melebihi penggunaan yang sesuai.
 - d. Aplikasi simultan dari stress

Uji tarik adalah suatu metode yang digunakan untuk menguji kekuatan suatu bahan/matrial dengan cara memberikan beban gaya yang sesumbu. Hasil yang didapatkan dari pengujian tarik sangat penting untuk rekayasa teknik dan desain produk karena menghasilkan data kekuatan material.

Pengujian uji tarik digunakan untuk mengukur ketahanan suatu material terhadap gaya statis yang diberikan secara lambat. Salah satu cara untuk mengetahui besaran sifat mekanik dari logam adalah dengan uji tarik. Sifat mekanik yang dapat diketahui adalah kekuatan dan elastisitas dari logam tersebut. Uji tarik banyak dilakukan untuk melengkapi informasi rancangan dasar kekuatan suatu bahan dan sebagai data pendukung bagi spesifikasi bahan. Nilai kekuatan dan elastisitas dari material uji. Pengujian tarik ini dilakukan untuk mengetahui sifat-sifat mekanis suatu material, khususnya logam diantara sifat-sifat mekanis yang dapat diketahui dari hasil pengujian tarik adalah sebagai berikut:

- Modulus elastisitas adalah ukuran kekuatan suatu bahan, makin besar modulus elastisitasnya maka makin kecil regangan elastis yang dihasilkan akibat pemberian tegangan. Modulus elastis suatu bahan ditentukan oleh gaya ikatan antar atom pada bahan tersebut. Karna gaya ini tidak dapat diubah tanpa terjadi perubahan mendasar sifat bahannya, maka modulus elastis merupakan salah satu dari banyak sifat mekanik yang tidak mudah diubah. Sifat ini hanya sedikit berubah oleh adanya penambahan paduan, perlakuan panas atau pengerjaan dingin. Modulus elastis biasanya diukur pada suhu tinggi dengan metode dinamik. Pada tegangan tarik rendah terdapat hubungan linear antara tegangan dan regangan dan disebut dearah elastis, pada daerah ini berlaku hukum hooke.
- 2. Batas proporsional adalah tegangan maksimum elastis bahan, sehingga apabila tegangan-regangan yang diberikan tidak melebihi proporsional, bahan tidak akan mengalami deformasi dan akan kembali kebentuk semula.
- 3. Batas elastis adalah tegangan terbesar yang masih dapat ditahan oleh suatu bahan tanpa terjadi regangan sisa permanen yang terukur pada saat beban ditiadkan dengan bertambahnya ketelitan pengukuran regangan, nilai batas

- elastisnya menurun hingga suatu batas yang sama dengan batas elastis sejati yang diperoleh dengan cara pengukuran tegangan mikro.
- 4. Kekuatan luluh adalah tegangan yang dibutuhkan untuk menghasilkan sejumlah kecil deformasi plastis yang ditetapkan.
- 5. Tegangan tarik maksimum adalah beban tarik maksimum yang dapat ditahan material sebelum patah.
- 6. Kekuatan tarik biasanya ditentukan dari suatu hasil pengujian tarik adalah luluh (yield stregth) merupakan titik yang menunjukan perubahan dari deformasi elastis ke deformasi plastis Pengujian tarik banyak dilakukan untuk melengkapi informasi rancangan dasar kekuatan suatu bahan dan sebagai data pendukung bagi spesifikasi bahan. Karena dengan pengujian tarik dapat diukur ketahanan suatu material terhadap gaya statis yang diberikan secara perlahan.

Pengujian tarik ini dapat merupakan salah satu pengujian yang penting untuk dilakukan, karena dengan pengujian ini dapat memberika berbagai informasi mengenai sifat-sifat logam. Dalam bidang industri diperlukan pengujian tarik ini untuk mempertimbangkan faktor metarulgi dan faktor mekanis yang tercakup dalam proses perlakuan terhadap logam jadi, untuk memenuhi proses selanjutnya. Oleh karna pentingnya pengujian tarik ini, kita sebagai mahasiswa metalurgi hendaknya mengetahui kekuatan tarik, kekuatan luluh, keuletan, modulus elastisitas, ketangguhan, dan lain-lain. Pada pengujian tarik ini kita juga harus mengetahui dampak pengujian terhadap sifat mekanis dan fisik suatu logam. Degan mengetahui parameterparameter tersebut maka dapat data dasar mengenai kekuatan suatu bahan atau logam

II. Metode Penelitian

Mesin uji tarik digunakan untuk mendapatkan nilai tegangan dan regangan dari suatu material. Alat uji tarik adalah sebuah mesin yang digunakan untuk pengujian tegangan tarik pada bahan atau material. Cara penggunaan Universal testing Machine adalah dengan memberikan gaya tarik keatas dan kebawah secara bersamaan terhadap material yang sedang diuji.

Gambar 1. Alat uji tarik

Tegangan tarik

$$\sigma = \frac{F}{\Delta}$$

Dimana

 σ = Tegangan Tarik

F = Gaya pada Elongasi Maksimum

 $A = Luas \; Penampang \; Spesimen \; yang \; Tidak \;$

Mengalami Regangan

Regangan

$$\varepsilon = \frac{L_1 - L_0}{L}$$

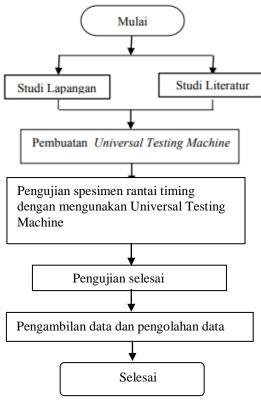
Dimana:

 $\varepsilon = Regangan$

L1 = Pertambahan Panjang

Lo = Panjang mula-mula

Modulus Elastisitas


$$E = \frac{\sigma}{c}$$

Dimana:

E = Modulus elastisitas

 σ = Tegangan

 $\varepsilon = Regangan$

Gambar 2. Kerangka Kerja

- a. Studi lapangan dan Studi literatur Melakukan pengumpulan sumber informasi secara abstrak ataupun penilitian terdahulu sebagai acuan akan digunakan untuk referensi dalam melakukan pengujian.
- b. Pembuatan Universal Testung Machine Melakukan pembuatan alat uji tarik

- dilaborotorium teknik mesin unversitas harapan medan.
- c. Pengujian specimen knalpot cup 70 dengan mengunakan Universal Testing Machine Melakukan pengujian berupa pengujian tarik.
- d. Pengambilan data dan pengolahan data Melakukan analisa dan pengolahan data dari pengujian yang telah dilakukan.

Adapun langkah-langkah kerja uji tarik (tensille test) yaitu, langka-langkah tegangan (stress) regangan (strain) dan elastisitas (deformasi) pengujian kekuatan tarik (tensile) dilakukan untuk mengetahui besarnya kekuatan tarik dari material knalpot cup 70 yang digunakan pengujian dilakukan di Laboratarium teknik mesin Universitas Harapan Medan. Pengujian tarik dalam penelitian ini adalah sebagai berikut

- 1. Melakukan penyetelan mesin uji tarik.
- 2. Memasang specimen knalpot cup 70 pada mesin uji tarik. Pencekam (grip) berfungi untuk menahan spesimen uji tarik dan pastikan terkait dengan rapat agar tidak terlepas dan terjadi kesalahan pada proses pengujian seperti Gambar 3

Gambar 3. Specimen knalpot cup 70 dengan cekam

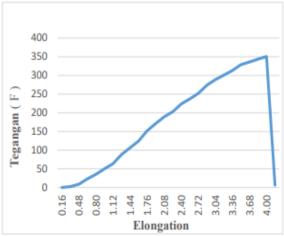
2.3 Heat Balance Mobil Avanza Veloz

- a. Menjalankan mesin uji tarik (Tensile Test).
- b. Setelah patah hentikan proses penarikan secepatnya.
- c. Melepaskan spesimen uji tarik dari jepitan pencengkam.
- d. Setelah selesai matikan uji tarik (Tensile Test).
- e. Memastikan semua data telah diperoleh agar dapat dilanjutkan dengan proses analisa data, mesin uji tarik berjalan secara manual sehingga spesimen uji tarik mencapai batas optimal hingga patah, alat ini akan terus berjalan. Karena itu

diperlukan operator yang selalu berada di sisi mesin untuk mengontrol proses pengujian tarik

III. Hasil Dan Pembahasan

Pada hasil proses pengujian ini yang dilakukan adalah pengujian tarik, pengujian ini menggunakan mesin Universal **Testing** Machine, pengujian ini bertujuan untuk mengetahui kekuatan dan tingkat ke elastistas dari matrial knalpot cup 70. Pengujian tarik dilakukan di Laborotorium teknik mesin di universitas teknik dan komputer harapan medan. Pengujian tarik ini dilakukan guna mengetahui kekuatan, serta elastisitas yang terjadi pada spesimen yang digunakan pada knalpot cup 70 sepeda motor. Dengan alat uji Universal Testing Machine, dengan kapasitas maksimum 3 Ton. Berikut ini adalah gambar spesimen pengujian tarik pada saat setelah dilakukan pengujian tarik

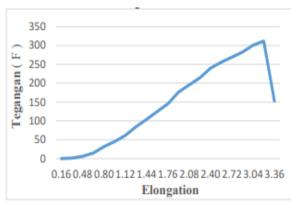


Gambar 4. Spesimen Setelah Pengujian

Tabel 1. Hasil rata-rata pengujian knalpot cup 70

Tuber 1: Hush rutu rutu pengujun manpot eup /o					
SPESI MEN	FORCE (N)	Lo (m)	Ao (m)	L1 (m	A1 (m)
1	154	0,11	0,192	0,112	0,204
2	151,55	0,11	0,192	0,114	0,216
3	165	0,11	0,192	0,112	0,204
4	196,77	0,11	0,192	0,115	0,222
5	234,66	0,11	0,192	0,116	0,218

Hasil uji tarik dari spesimen 1 yang dilakukan pengujian tarik didapatkan hasil tegangan tarik sebesar 8,02 F, elongation sebesar 4,16 dengan pengujian tarik dilakukan sebesar 3000 kgf.

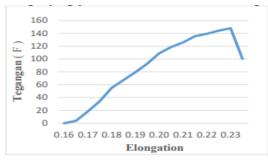


Gambar 5. Hasil Uji Tarik Spesimen 1

Merupakan hasil pengujian dengan Universal Tensile Machine pada knalpot spesimen 1, hasil tegangan, regangan dan modulus elastisitas sebagai berikut

- A.Stress meghasilkan pada nilai 8,02 Mpa
- B. Strain menghasilkan pada nilai 0,01
- C. Modulus Elastisitas pada nilai 802,08Mpa

Hasil uji tarik dari spesimen 2 yang dilakukan pengujian tarik didapatkan hasil tegangan tarik sebesar 7,89 F, elongation sebesar 3,36 dengan pengujian tarik dilakukan sebesar 3000 kgf



Gambar 6. Hasil Uji Tarik Spesimen 2

Merupakan hasil pengujian dengan Universal Tensile Machine pada knalpot spesimen 2, hasil tegangan, regangan dan modulus elastisitas sebagai berikut:

- A.Stress meghasilkan pada nilai 7,89 Mpa
- B. Strain menghasilkan pada nilai 0,03
- C. Modulus Elastisitas pada nilai 263,4Mpa

Hasil uji tarik dari spesimen 3 yang dilakukan pengujian tarik didapatkan hasil tegangan tarik sebesar 8,59 F, elongation sebesar 859,37Mpa dengan pengujian tarik dilakukan sebesar 3000 kgft

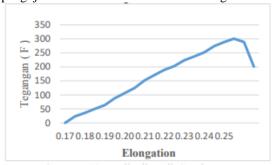
Gambar 7. Hasil Uji Tarik Spesimen 3

Merupakan hasil pengujian dengan Universal Tensile Machine pada knalpot spesimen 3, hasil tegangan, regangan dan modulus elastisitas sebagai berikut

A.Stress meghasilkan pada nilai 8,59 Mpa

- B. Strain menghasilkan pada nilai 0,01
- C. Modulus Elastisitas pada nilai 859,37Mpa

Hasil uji tarik dari spesimen 4 yang dilakukan pengujian tarik didapatkan hasil tegangan tarik sebesar 10,2 F, elongation sebesar 256,21Mpa dengan pengujian tarik dilakukan sebesar 3000 kgft


Gambar 8. Hasil Uji Tarik Spesimen 4

Merupakan hasil pengujian dengan Universal Tensile Machine pada knalpot spesimen 4, hasil tegangan, regangan dan modulus elastisitas sebagai berikut :

A.Stress meghasilkan pada nilai 10,2 Mpa

- B. Strain menghasilkan pada nilai 0,05
- C. Modulus Elastisitas pada nilai 244,43Mpa

Hasil uji tarik dari spesimen 5 yang dilakukan pengujian tarik didapatkan hasil tegangan tarik sebesar 6,44 F, elongation sebesar 5,28Mpa dengan pengujian tarik dilakukan sebesar 3000 kgft

Gambar 9. Hasil Uji Tarik Spesimen 5

Merupakan hasil pengujian dengan Universal Tensile Machine pada knalpot spesimen 5, hasil tegangan, regangan dan modulus elastisitas sebagai berikut

A.Stress meghasilkan pada nilai 6,44 Mpa

- B. Strain menghasilkan pada nilai 0,023
- C. Modulus Elastisitas pada nilai 5,28Mpa

IV. Kesimpulan

Dari hasil pengujian yang telah dilakukan dengan menggunakan metode tensile test terhadap knalpot cup 70 diperoleh kesimpulan adalah sebagai berikut:

- 1. Dari hasil pengujian tarik yang telah dilakukanpada spesimen 5, menunjukan hasil tegangan tarik terebesar 12,2 Mpa
- 2. Dari hasil pengujian tarik yang telah dilakukan pada spesimen 3, menunjukan hasil regangan tarik terebesar 859,37 Mpa
- Dari hasil pengujian tarik yang telah dilakukan pada spesimen 5, menunjukan hasil modulus elastisitas sebesar 244,43 Mpa

Daftar Pustaka

- [1]. A. Fadilah, R. A., 2016. Analisa penggunaan Knalpot Model Free Flwo dan Busi Racing Terhadap Torsi.
- [2]. F. Andy dan H. I., 2015, Desain Dan Analisa Knalpot Pada Sepeda Motor, A.Tekno.
- [3]. D. Naura, H. Abizar, dan E. Susanto, 2023, *Analisis Kegagalan Terhadap Peforma Knalpot*, Univ. Muhammadiyah Purworejo.
- [4]. J. Comaro, I. Malik, and . K., 2020, Perancangan Dan Pengembangan Alat Uji Tarik Mini Berbasis Arduino Untuk Spesimen Non-Ferro, Mach. J. Teknol. Terap., vol. 1, no. 1, pp. 55–61, 2020, [Online]. Available: https://jurnal.polsri.ac.id/index.php/machinery/a rt icle/view/2739.
- [5]. H. Umg and U. M. Gresik, *Uji Tarik* By: Hidayat S. T., M. Eng," no. June, 2020.
- [6]. Suarsana, 2017, *Ilmu Material Teknik*, Univ. Udayana, pp. 47–56, 2017