ANALISA PENGAKU (STIFFENER) PADA BALOK BAJA IWF AKIBAT TORSIONAL BUCKLING

Dina Sartika Siregar¹⁾, Subur Panjaitan²⁾, Ronal HT Simbolon³⁾

¹⁾Alumni Program Studi Teknik Sipil, Fakultas Teknik UISU ^{2,3)}Dosen Program Studi Teknik Sipil, Fakultas Teknik UISU dinasiregar96@gmail.com

Abstrak

Tekuk (buckling) adalah masalah yang paling rentan terjadi pada konstruksi baja yang menggunakan profil IWF yang bentuk geometrisnya cukup tipis. Sehingga suatu struktur yang menggunakan profil IWF harus benar-benar diperhitungkan bahaya tekuk, baik tekuk lokal (flens dan web) maupun tekuk torsi lateral (lateral torsional buckling) . Selain faktor keamanan, perencanaan struktur di bidang teknik sipil juga harus ekonomis dalam pelaksanaannya. Pada tulisan ini akan menganalisa dua profil balok IWF terhadap tekuk dengan panjang bentang dan pembebanan yang sama dengan metode LRFD dan berdasarkan SNI 03-1729-2002. Profil yang digunakan yaitu IWF $400\times400\times13\times21$ dan IWF $350\times350\times12\times19$. Dari hasil analisa kedua profil memenuhi kriteria sebagai balok dengan pengaku (Stiffener). Profil IWF 400.400.13.21 dapat digunakan sebagai balok crane dengan pengaku ($b_s=130$ mm; $t_s=11$ mm) Sedangkan profil IWF 350.350.12.19 dapat digunakan sebagai balok crane dengan pengaku ($b_s=120$ mm; $t_s=10$ mm), dan dapat disimpulkan bahwa profil IWF $350\times350\times12\times19$ lebih efisien dan tidak boros.

Kata-Kata Kunci: Profil IWF, Tekuk, Torsi lateral, Stiffener

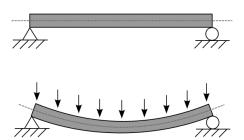
I. Pendahuluan

Pada zaman modern ini material baja sebagai bahan konstruksi sudah mulai banyak digunakan dalam suatu bangunan. Baja dapat berfungsi sebagai komponen tekan, tarik, lentur atau kombinasinya. Bentuk penampang baja lebih mudah dibentuk untuk memenuhi setiap keperluan. Disamping itu baja memiliki sifat daktilitas, yaitu sifat dari baja yang dapat mengalami deformasi yang besar di bawah pengaruh tegangan tarik yang tinggi tanpa mengalami leleh atau putus, adanya sifat ini membuat struktur baja mampu mencegah terjadinya proses robohnya bangunan secara tiba-tiba.

Profil yang umum digunakan pada balok adalah plat yang tersusun sehingga membentuk penampang I. Profil ini memiliki ketebalan badan (web) yang tidak terlalu tebal. Apabila sebuah batang lurus (profil) mendapatkan gaya tekan aksial, semakin lama semakin besar gaya tekan aksialnya, maka batang tersebut akan mengalami deformasi (perubahan bentuk) terhadap sumbu vertikal dan horizontal. Perubahan bentuk terhadap sumbu horizontal dari keadaan sumbu batang lurus menjadi sumbu batang melengkung, hal ini dinamakan tekuk (buckling). Sehingga suatu struktur menggunakan profil IWF harus benar-benar diperhitungkan bahaya tekuk lokal (flens dan web) serta tekuk torsi lateralnya.

Pada umumnya batang akan mengalami tekuk kearah sumbu lemah penampang. Untuk menghindari terjadinya tekuk, Hal ini yang menyebabkan dipasangnya pengaku (*stiffener*) pada balok yang bertujuan untuk membuat balok menjadi lebih kaku (*rigid*).

II. Tinjauan Pustaka


2.1 Umum

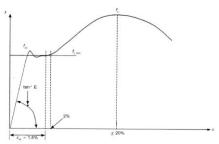
Dalam perencanaan struktur baja metode LRFD (*Load and Resitance Factor Design*) atau disebut juga perencanaan kondisi batas, menggunakan konsep probabilitas yang jauh lebih rasional. Metode LRFD untuk perencanaan struktur baja diatur dalam SNI 03-1729-2002.

Suatu struktur dikatakan stabil jika tidak mudah terguling, miring, atau tergeser selama umur rencana bangunan. Resiko terhadap kegagalan struktur dan hilangnya kemampuan layanan selama umur rencana bangunan juga harus diminimalisir dalam batas-batas yang masih bisa diterima.

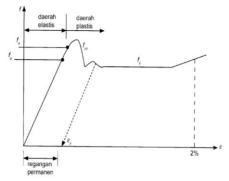
2.2 Balok Baja

Balok merupakan elemen struktur yang memikul beban yang bekerja tegak lurus dengan sumbu longitudinalnya. Hal ini yang menyebabkan balok terlentur. Dalam proses desain balok, pada awalnya yang ditinjau adalah masalah momen lentur balok dan efek-efek lainya seperti geser atau defleksi. (Spiegel,1998)

Gambar 1. Perilaku balok akibat pembebanan


Balok merupakan kombinasi antara elemen yang tertekan dan elemen yang tertarik. Pada gambar 2.1 diatas dapat dilihat bahwa balok yang dibebani P akan melentur dengan jari-jari R yang tidak konstan. Bagian atas pada garis netral (g.n) tertekan dan bagian bawah dari garis netral (g.n) tertarik, sehingga pada bagian atas garis netral (g.n) terjadi perpendekan dan dibawah garis netral (g.n) terjadi perpanjangan.

Bentuk profil IWF sangat efisien untuk memikul momen lentur karena sayapnya yang lebar dan tebal badannya yang tipis. Sehingga perbandingan momen inersia dan berat profilnya besar.


2.3 Sifat Material Baja

Agar dapat memahami perilaku struktur baja, perlu dilakukan pengujian. Model pengujian yang paling tepat untuk mendapatkan sifat-sifat mekanik material baja adalah dengan melakukan uji tarik terhadap sifat-sifat mekanik material baja, karena disebabkan beberapa hal antara lain adanya potensi tekuk (*buckling*) pada benda uji yang mengakibatkan ketidak stabilan dari benda uji tersebut, selain itu perhitungan tegangan yang terjadi pada benda uji lebih mudah dilakukan untuk uji tarik dari pada uji tekan.

Gambar 2 dan Gambar 3 rnenunjukkan suatu hasil uji tarik material baja yang dilakukan pada suhu kamar serta dengan memberikan laju regangan yang normal. Tegangan nominal (f) yang terjadi dalam benda uji diplot pada sumbu vertikal, sedangkan regangan (ε) yang merupakan perbandingan antara pertambahan panjang dengan panjang mula-mula $(\Delta L/L)$ diplot pada sumbu horizontal.

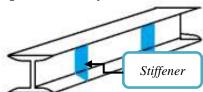
Gambar 2. Kurva hubungan Tegangan (f) vs regangan (ε)

Gambar 3. Kurva tegangan (f) - regangan (ε) yang diperbesar

Gambar 2 merupakan hasil uji tarik dari suatu benda uji baja yang dilakukan hingga benda uji mengalami keruntuhan, sedangkan Gambar 2.3 menunjukkan gambaran yang lebih detail dari perilaku benda uji hingga mencapai regangan sebesar ±2%.

Sedangkan berdasarkan tegangan leleh dan tegangan putusnya, SNI 03-1729-2002 mengklasifikasikan mutu dari material baja yang sama yaitu:

Tabel 2.1Sifat-sifat Mekanis Baja Struktural


Jenis Baja	Tegangan Putus Minimum fu (Mpa)	Tegangan Leleh Minimum fy (Mpa)	Regangan Minimum (%)
BJ 34	340	210	22
BJ 37	370	240	20
BJ 41	410	250	18
BJ 50	500	290	16
BJ 55	550	410	13

2.4 Bebar

Beban adalah gaya luar yang bekerja pada suatu struktur. Penentuan secara pasti besarnya beban yang bekerja pada suatu struktur selama umur layannya merupakan salah satu pekerjaan yang sulit, dan pada umumnya penetuan besarnya beban merupakan estimasi saja. Meskipun beban yang bekerja pada suatu lokasi dari struktur dapat diketahui secara pasti, namun distribusi beban dari elemen ke elemen dalam suatu struktur umumnya memerlukan asumsi dan pendekatan. Jika beban-beban yang bekerja pada suatu struktur telah diestimasi, maka masalah berikutnya adalah menentukan kombinasikombinasi beban yang paling dominan yang mungkin bekerja pada suatu struktur. Besar baban yang bekerja pada suatu struktur diatur oleh peraturan pembebanan yang berlaku, sedangkan masalah dari kombinasi dari beban-beban yang bekerja telah diatur dalam SNI 03-1729-2002.

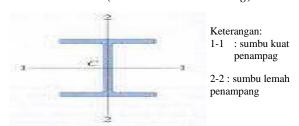
2.5 Stiffener (Pengaku)

Stiffener adalah bantalan pengaku (plat) yang digunakan pada titik tumpuan suatu balok ketika balok tidak memiliki kemampuan pada badan profil untuk mendukung reaksi akhir atau beban terpusat. Batas untuk kondisi ini antara lain leleh lokal pada badan profil (web local yielding), web crippling dan web local buckling. Stiffener dibuat untuk membantu badan balok menciptakan garis-garis nodal selama tekuk pelat badan (web) dan untuk menerima gayagaya tekan yang ditransmisikan dari badan balok. Pada flens tekan, pengelasan pengaku memberikan stabilitas kepada pengaku (Stiffener) dan menjaganya agar tetap tegak lurus tehadap badan balok.

Gambar 4. Ilustrasi stiffener profil IWF

2.6 Tekuk Lokal Balok (Local Buckling)

Tekuk (buckling) merupakan fenomena instabilitas yang terjadi pada batang langsing, pelat dan cangkang yang tipis. Konsekuensi tekuk pada dasarnya adalah masalah geometrik dasar, dimana terjadi lendutan besar akan mengubah bentuk struktur. Pada fenomena tekuk, struktur secara keseluruhan belum tentu gagal. Struktur dapat saja kembali seperti semula. Hal ini dikarenakan proses terjadinya buckling adalah pada daerah elastis. Sehingga ketika beban tekan yang terjadi dihilangkan, struktrur akan kembali seperti semula. (Agus Triono, 2007)

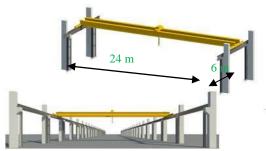

Elemen – elemen yang mengalami tekuk lokal pelat profil IWF yaitu:

- 1. Sayap atas (top flens)
- 2. Sayap bawah (bottom flens)
- 3. Pelat badan (web).

Bentuk profil baja yang cenderung langsing/tipis lebih mudah untuk mengalami kegagalan tekuk. Local buckling biasanya terjadi pada: balok tinggi (balok girder, biasanya padajembatan), balok yang tidak diberi stiffener plate, balok yang mengalami beban terpusat yang sangat besar, contohnya balok crane, balok transfer, dll.

2.7 Tekuk Torsi Lateral Balok (Lateral Torsional Buckling)

Flens tekan dari balok dapat dianggap sebagai kolom. Sayap yang diasumsikan sebagai kolom ini akan tertekuk dalam arah lemahnya akibat lentur terhadap suatu sumbu seperti 1-1. Namun karena web balok memberikan sokongan untuk mencegah tekuk dalam arah ini, maka flens akan cenderung tertekuk oleh lentur pada sumbu 2-2. Karena bagian tarik dari balok berada dalam kondisi stabil, maka proses tekuk lentur dalam arah lateral tersebut tersebut akan dibarengi dengan proses torsi sehingga terjadilah tekuk torsi lateral (lateral torsional buckling)


Gambar 5. Sumbu lemah dan kuat IWF

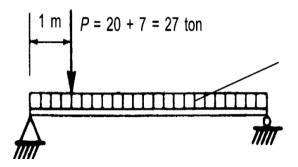
Tekuk torsi lateral (*lateral torsional buckling*) adalah kondisi batas yang menentukan kekuatan sebuah balok. Sebuah balok mampu memikul momen maksimum hingga mencapai momen plastis (M_n)

III. Metodologi

3.1 Umum

Bagian ini membahas tentang metodologi perhitungan perencanaan balok pada *hoist crane* dengan menggunakan baja profil IWF

Gambar 6. Struktur hoist crane


Struktur akan direncanakan mengacu pada persyaratan-persyaratan komponen struktur lentur sesuai dengan Tata Cara Perencanaan Struktur Baja Untuk Bangunan Gedung SNI03-1729-2002.

Tahapan penelitian yang digunakan adalah sebagai berikut :

- a. Menentukan desain dan ukuran balok crane
- Membuat variasi permodelan dengan bentang 23 m
- c. Menggunakan pembebanan terpusat sebesar 27 ton
- d. Menghitung pembebanan yang terjadi pada balok *crane* dan menentukan reaksi pada rodaroda *crane*
- e. Menentukan dimensi profil balok *crane* yang sesuai dengan momen tahanan perlu (Z_x)
- f. Memilih 2 profil balok yang akan dianalisa terhadap tekuk lokal (*local buckling*), tekuk torsi lateral (*lateral torsional buckling*), gaya geser, kuat tumpu
- g. Dari kedua profil yang dianalisa, ditentukan satu profil sebagai balok *crane* yang lebih efisien

3.2 Desain Data

3.2.1 Perencanaan umum

Gambar 7. Perencanaan dimensi balok

Dimensi balok yang direncanakan pada penelitian ini adalah :

- a. Menggunakan desain sendi rol dalam perencanaan
- b. Mutu profil baja BJ37 ($f_y = 240$ MPa; $f_u = 370$ MPa)
- c. Fungsi balok *crane* adalah untuk pemasangan *hoist crane* untuk gudang ataupun industri
- d. Bangunan hanya ditinjau dalam dua dimensional. Apabila bangunan cukup kuat setelah ditinjau dalam dua dimensi, maka secara teoritis dan literature yang sudah pernah ada sebelumnya, bangunan otomatis lebih kuat apabila ditinjau secara tiga dimensional

3.2.2 Beban-beban yang bekerja

Beban adalah gaya luar yang bekerja pada suatu struktur. Gaya adalah sebuah vektor yang mempunyai besar dan arah. Pada umumnya penentuan besarnya beban hanya merupakan perkiraan. Meskipun beban yang bekerja pada suatu lokasi dari struktur dapat diketahui secara pasti, namun distribusi beban dari elemen ke elemen lainnya umumnya memerlukan asumsi dan pendekatan pada beban yang bekerja secara maksimum.

3.2.3 Kombinasi pembebanan

Dalam peraturan baja Indonesia, SNI 03-1729-2002 Pasal 6.2.2 mengenai kombinasi pembebanan (*u*), dinyatakan bahwa dalam perencanaan suatu struktur baja haruslah diperhatikan jenis-jenis kombinasi pembebanan berikut ini:

- 1) 1,4D
- 2) $1,2D + 1,6L + 0,5 (L_a \text{ atau } H)$

3.2.4 Kombinasi pemebabanan pada crane

Pembebanan derek (*crane*) tidak bisa kita samakan dengan kombinasi pembebanan diatas. Dikarenakan derek yang bergerak memiliki nilai beban terpusat yang cukup besar sehingga diperlukan parameter tersendiri.

Beban hidup derek adalah berdasarkan nilai kapasitas dari derek tetapi pada bagian beban rencana untuk balok *runway*, termasuk sambungan dan tumpuan konsol pendek, dari derek jembatan yang bergerak dan derek rel tunggal harus memasukan beban maksimum dari derek dan nilai dari gaya impak vertikal, lateral, dan longitudinal yang diakibatkan oleh derek yang bergerak.

3.3 Perencanaan Balok IWF dengan Parameter SNI 03-1729-20002

Perencanaan untuk balok baja mengacu pada metode LRFD dan peraturan SNI 03-1729-20002. Profil balok dipilih $\geq Z_{x \, perlu}$ balok, selanjutnya dilakukan kontrol terhadap beberapa aspek, yaitu:

3.3.1 Kontrol momen nominal pengaruh *local buckling*

a) Pengaruh *local buckling* pada *flens* $M_n = M_p \ \ \, \rightarrow Penampang \ kompak$ $M_n = M_p - \left(M_p - M_r\right) \times \\ \frac{\lambda_f - \lambda_p}{\lambda_r - \lambda_p} \ \ \, \rightarrow Penampang \ tidak \ kompak$

 $M_n = M_r \times \left(\frac{\lambda_r}{\lambda_f}\right)^2 \rightarrow Penampang$ langsing

b) Pengaruh *local buckling* pada *flens* $M_n = M_p \rightarrow \text{Penampang kompak}$ $M_n = M_p - \left(M_p - M_r\right) \times \frac{\lambda_f - \lambda_p}{\lambda_r - \lambda_p} \rightarrow \text{Penampang tidak kompak}$

 $M_n = M_r \times \left(\frac{\lambda_r}{\lambda_w}\right)^2 \rightarrow Penampang langsing$

3.3.2 Kontrol momen nominal pengaruh *lateral* torsional buckling

 $M_{n} = C_{b} \cdot \left[M_{r} + \left(M_{p} - M_{r}\right) \frac{L_{r} - L}{L_{r} - L_{p}}\right]$

3.3.3 Kontrol momen nominal plat berdinding penuh $M_n = K_g \cdot S_x \cdot f_{cr}$

3.3.4 Tahanan momen lentur $M_{ux} \le \varphi_b \cdot M_n$

3.3.6 Perencanaan stiffener Jika $R_u > \phi \cdot R_b$, maka harus dipasang stiffener (pengaku) sehingga $R_u - \phi R_b \le A_s \cdot f_y$

3.3.7 Kontrol *stiffener*

• Lebar stiffener(b_s) $b_s > \frac{b_f}{3} - \frac{t_w}{2} \rightarrow$ • Tebal stiffener(t_s)

• Tebal stiffener(t_s) $t_s = 12 \text{ mm} > \frac{t_f}{2} = \frac{21}{2} = 10,5 \text{ mm}$ $\frac{b_s}{t_s} \le 0,56 \sqrt{\frac{E}{f_y}} \rightarrow$

Syarat: $R_u \le \phi_c \cdot A' \cdot \frac{f_y}{\omega} \to Aman$

IV. Data Perhitungan

Perencanaan struktur utama seperti Gambar 8 dengan data-data perencanaan [SNI 03-1729-2002, Tata Cara Perencanaan Strtuktur Baja untuk Bangunan Gedung, Badan Standar Nasional]sebagai berikut:

• Tipe konstruksi : Frame portal

• Jarak antar portal =6 m

• Lebar bangunan = 24 m

• Baja profil =BJ 37

• Tegangan leleh (F_v) =240 Mpa

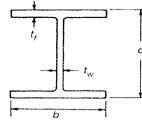
• Tegangan tarik (Fu) =370 Mpa

• Modulus Elastisitas =200.000 Mpa

• Kapasitas *crane* = 20 ton

• Berat sendiri crane =15 ton

• Berat takel =7 ton


• Berat sendiri rel = 30 kg/m

• Jarak roda-roda = 3,8 m

• Data lainnya sesuai peraturan yang berlaku

Profil IWF 400.400.13.21

Dicoba Profil 400.400.13.21; dimana Z_x (= $3.600.133 \text{ mm}^3$) $\geq 2,1891 \times 10^6 \text{ mm}^3$

Gambar 8. Profil IWF

(Sumber: buku Perencanaan Struktur Baja - Agus Setiawan hal.85)

- Modulus Geser (G = 80.000 MPa)
- Gaya geser akibat beban terfaktor

$$V_{..} = 378.674 \text{ kN}$$

 $V_u = 378,674 \, \mathrm{kN}$ Konstanta puntir lengkung (I_w)

$$\begin{split} h^{'} &= d - t_{\rm f} = 400 - 21 = 379 \text{ mm} \\ I_w &= \frac{1}{4} \cdot I_y \cdot h^{'2} = \frac{1}{4} \cdot 22.400 \times 10^4 \cdot 379^2 \\ &= 8.044 \times 10^{12} \text{mm}^6 \end{split}$$

Konstanta torsi (J)

 $J = 2.731.775,333 \text{ mm}^4$

Koefisien momen tekuk torsi lateral

$$\begin{split} X_1 &= \frac{\pi}{S_x} \sqrt{\frac{EGJA}{2}} \\ X_1 &= 20.625,187 \text{ MPa} \\ X_2 &= 4 \left(\frac{S_x}{G \cdot J}\right)^2 \times \frac{I_w}{I_y} \\ X_2 &= 3,335 \times 10^{-5} \text{mm}^4/\text{N}^2 \end{split}$$

Modulus penampang plastis (Z_x)

$$\begin{split} Z_x &= b \cdot t_f (d - t_f) + \frac{1}{4} \cdot t_w (d - 2t_f)^2 \\ Z_x &= 3.600.133 \text{ mm}^3 \\ Z_y &= \frac{1}{2} b^2 \cdot t_f + \frac{1}{4} \cdot t_w^2 (d - 2t_f) \\ Z_y &= 1.695.125,5 \text{mm}^3 \end{split}$$

Perhitungan kekuatan

Ketebalan plat badan dengan pengaku vertikal tanpa pengaku memanjang harus memenuhi:

$$\begin{aligned} \frac{\frac{h}{t_w} \leq 7,07 \cdot \sqrt{E/f_y} \\ \frac{\frac{400 - (2 \cdot 21)}{13}}{13} \leq 7,07 \cdot \sqrt{2 \times 10^5/240} \\ 27,539 \leq 204,093 \longrightarrow \text{tebal plat badan} \end{aligned}$$

• Momen nominal pengaruh local buckling Pengaruh *local buckling* pada sayap (*flens*)

Kelangsingan penampang sayap
$$\lambda_f = \frac{b}{2t_f} = \frac{400}{2\cdot 21} = 9,524$$

Batas maks. penampang compact
$$\lambda_p = \frac{170}{\sqrt{f_y}} = \frac{170}{\sqrt{240}} = 10,973$$

Batas maks. penampang non-compact
$$\lambda_r = \frac{^{625}}{\sqrt{f_y}} = \frac{^{625}}{\sqrt{240}} = 40,344$$

 $\lambda_{\rm f} (=9.524) < \lambda_{\rm p} (=10.973) < \lambda_{\rm r} (=40.344)$

Sayap (*flens*) termasuk penampang →kompak Momen nominal dihitung sebagai berikut:

• Momen plastis $M_p = Z_x \cdot f_y$

$$\rm M_p = 3.600.133 \cdot 240 = 864,\!032kN \cdot m$$

Momen batas tekuk

$$M_r = S_x \cdot (f_v - f_r) = 566,1 \text{ kN} \cdot \text{m}$$

Momen nominal untuk penampang kompak

yaitu: $M_n = M_p = 864,032 \text{ kN} \cdot \text{m}$

b) Pengaruh local buckling pada badan (web)

Kelangsingan penampang sayap

$$\lambda_{\rm w} = \frac{h}{t_{\rm w}} = \frac{400 - (2 \cdot 21)}{13} = 27,538$$

Kelangsingan penampang sayap
$$\lambda_w = \frac{h}{t_w} = \frac{400 - (2 \cdot 21)}{13} = 27,538$$
 Batas maks. penampang compact
$$\lambda_p = \frac{1680}{\sqrt{f_y}} = \frac{1680}{\sqrt{240}} = 108,444$$

Batas maks. penampang non-compact
$$\lambda_{\rm r} = \frac{^{2550}}{\sqrt{f_{\rm y}}} = \frac{^{2550}}{\sqrt{240}} = 164,\!602$$

$$\lambda_{\rm w} < \lambda_{\rm p} < \lambda_{\rm r}$$

web termasuk penampang \rightarrow kompak

Momen nominal dihitung sebagai berikut:

Momen plastis
$$M_p = Z_x \cdot f_y$$

 $M_p = 3.600.133 \cdot 240 = 864,032 \text{ kN} \cdot \text{m}$

Momen nominal untuk penampang kompak $M_n = M_p = 864,032 \text{ kN} \cdot \text{m}$ yaitu:

Momen nominal pengaruh lateral torsional buckling

$$L_{P} = \frac{790}{\sqrt{f_{y}}}$$
. $r_{y} = 5.150,42 \text{ mm}$

$$L_r = r_y \cdot \left(\frac{X_1}{f_{y-}f_r}\right) \sqrt{1 + \sqrt{1 + X_2(f_{y-}f_r)^2}}$$

$$L_P < L < L_r \rightarrow$$
 Bentang menengah

Momen nominal dihitung sebagai berikut:

•
$$M_r = S_x \cdot (f_y - f_r) = 566,1 \text{ kN} \cdot \text{m}$$

•
$$M_p = Z_x \cdot f_y = 864,032 \text{ kN} \cdot \text{m}$$

•
$$M_n = 845,741 \text{ kN} \cdot \text{m}$$

Momen nominal balok kategori bentang menengah yaitu: $M_n = 845,741 \text{ kN} \cdot \text{m}$

Momen nominal balok plat berdinding penuh

Untuk kelangsingan
$$\lambda_{\rm G} \le \lambda_{\rm p} \longrightarrow f_{\rm cr} = f_{\rm y}$$
 $a_{\rm r} = \frac{A_{\rm w}}{A_{\rm f}} = \frac{h \cdot t_{\rm w}}{b \cdot t_{\rm f}} = \frac{379 \cdot 19}{400 \cdot 21} = 0,857$

$$\frac{h}{t_{\rm w}} = \frac{400 - (2 \cdot 21)}{13} = 27,538$$

$$K_g = 1 - \left[\frac{a_r}{1200 + 300 \cdot a_r}\right] \left[\frac{h}{t_w} - \frac{2550}{\sqrt{f_{cr}}}\right] = 0.919$$

 $M_n = K_g \cdot S_x \cdot f_{cr} = 734,465 \text{ kN} \cdot$

- Tahanan momen lentur
- a) M_n pengaruh local buckling pada flens $M_n = 864,032 \text{ kN} \cdot \text{m}$
- b) M_n pengaruh local buckling pada web $M_n = 864,032 \text{ kN} \cdot \text{m}$
- c) M_n balok plat berdinding penuh $M_n = 734,465 \text{ kN} \cdot \text{m}$
- d) M_npengaruh lateral torsional buckling $M_n = 845,741 \text{ kN} \cdot \text{m}$

M_n terkecil yang menentukan, sehingga tahanan momen lentur yaitu:

$$\phi_b \cdot M_n = 0.9 \cdot 734,465 = 661,0185 \text{ kN} \cdot \text{m}$$

Syarat yang harus dipenuhi: $\mathbf{M_{ux}} \leq \mathbf{\phi_b} \cdot \mathbf{M_n}$
 $\mathbf{M_{ux}} (= 472,845) \leq \phi_b \cdot \mathbf{M_n} (= 661,0185)$
 $\frac{M_{ux}}{\phi_b \cdot M_n} = 0.715 < 1.0 \rightarrow \text{OK}$

Kontrol tahanan geser

Tahanan geser nominal plat badan dengan pengaku dihitung sebagai berikut:

- $A_{w} = t_{w} \cdot h == 4.654 \text{ mm}^{2}$ $K_{n} = 5 + \frac{5}{\left(\frac{a}{h}\right)^{2}} = 5 + \frac{5}{\left(\frac{1500}{358}\right)^{2}} = 5,285$
- $\frac{h}{t_w} = \frac{358}{13} = \frac{h}{27,538}$ $1,10 \cdot \sqrt{\frac{K_n \cdot \frac{E}{f_y}}{1000}} = 73,000$
- $1,37 \cdot \sqrt{K_n \cdot \frac{E}{f_n}} = 90,919$

$$\frac{_{h}}{^{t_{w}}} < 1,10 \cdot \sqrt{K_{n} \cdot \frac{_{E}}{^{f_{y}}}} \quad dan \quad \frac{_{h}}{^{t_{w}}} < 1,37 \cdot \sqrt{K_{n} \cdot \frac{_{E}}{^{f_{y}}}} \quad \rightarrow \quad$$

Kuat geser nominal dihitung sebagai berikut:

$$\begin{split} &V_{n} = 0.60 \cdot f_{y} \cdot A_{w} = 670.176 \text{ kN} \\ &V_{n} \cdot \phi = 670.176 \cdot 0.9 = 603.158 \text{ kN} \\ &\textbf{Syarat: } \textbf{V}_{\textbf{u}} \leq \textbf{V}_{\textbf{n}} \cdot \boldsymbol{\varphi} \end{split}$$

378.674 kN <

603, 158 kN \rightarrow OK

Perencanaan stiffener (pengaku)

Stiffener penumpu beban R_b ditentukan oleh:

· Lentur pelat sayap

$$R_b = 6.25 \cdot t_f^2 \cdot f_v = 661.5 \text{ kN}$$

• Kuat leleh pelat badan

$$R_b = (2.5k + N) \cdot f_y \cdot t_w$$
 $k = 43mm$ $R_b = 482.4 \text{ kN}$

· Kuat tekuk dukung pelat badan

$$\frac{N}{d} = \frac{60}{400} = 0.15 \le 0.2$$
 maka:

$$R_{b} = 0.39 \cdot t_{w}^{2} \cdot \left[1 + 3\left(\frac{N}{d}\right) \cdot \left(\frac{t_{w}}{t_{f}}\right)^{1.5}\right] \sqrt{\frac{E \cdot f_{y} \cdot t_{f}}{t_{w}}}$$

 $R_b = 707,583 \text{ kN}$

- Kuat tekuk lateral pelat badan
 - a) Untuk pelat sayap yang dikekang terhadap rotasi dihitung bila:

$$\frac{\left(\frac{h}{\mathsf{t_W}}\right)}{\left(\frac{L}{h_c}\right)} \le 2.3 \quad \rightarrow \frac{\left(\frac{358}{13}\right)}{\left(\frac{6000}{400}\right)} = 1.836 \le 2.3$$

$$R_{b} = \frac{c_{r} \cdot E \cdot t_{w}^{3} \cdot t_{f}}{h^{2}} \left[1 + 0.4 \frac{\left(\frac{h}{t_{w}}\right)^{3}}{\left(\frac{L}{b_{f}}\right)^{3}} \right]$$

 $R_{\rm b} = 405,311 \, \rm kN$

Untuk pelat sayap yang dikekang terhadap rotasi dihitung bila:

$$\frac{\left(\frac{h}{t_W}\right)}{\left(\frac{L}{b_f}\right)} \le 1.7 \quad \to \frac{\left(\frac{358}{13}\right)}{\left(\frac{6000}{400}\right)} = 1.836 \le 1.7$$

$$R_{b} = \frac{c_{r} \cdot E \cdot t_{w}^{3} \cdot t_{f}}{h^{2}} \left[0.4 \frac{\left(\frac{h}{t_{w}}\right)^{3}}{\left(\frac{L}{b_{f}}\right)^{3}} \right] = 288,677 \text{ kN}$$

Kuat tekuk lentur pelat badan

$$R_b = \frac{24,08 \cdot t_w^3}{h} \sqrt{E \cdot f_y} = 1.023,821 \text{ kN}$$

Dari ke-6 nilai R_b diatas diambil nilai R_b yang terkecil yaitu : $R_b = 288,677 \text{ kN}$

$$\phi \cdot R_{\rm b} = 0.9 \cdot 288,677 \, \text{kN} = 259,803 \, \text{kN}$$

Kuat tumpu perlu (R_u) pada pelat badan harus memenuhi:

 $R_u \leq \phi \cdot R_b$

 $\mathbf{R}_{\mathbf{u}}$ (= 378,674 kN) > $\phi \cdot \mathbf{R}_{\mathbf{b}}$ (= 259,803 kN)

tidak memenuhi syarat, maka harus dipasang pengaku, sehingga

$$R_u - \phi R_b \le A_s \cdot f_y$$

 $A_s \ge \frac{R_u - \phi R_b}{f_v} \rightarrow A_s \ge 495,296 \text{ mm}^2$

Ambil stiffener lebar 130 mm dan tebal 11 mm dikedua sisi

Kontrol lebar pengaku (stiffener)

$$b_s = 130 \text{ mm} > \frac{b_f}{3} - \frac{t_w}{2} = 126,83 \text{ mm}$$
• Kontrol tebal pengaku (*stiffener*)

$$t_s = 11 \text{ mm} > \frac{t_f}{2} = \frac{21}{2} = 10,5 \text{ mm}$$

 $\frac{b_s}{t_s} = 11,82 \le 0,56 \sqrt{\frac{E}{f_y}} = 16,17$

Momen nominal dihitung sebagai berikut:

$$M_p = Z_x \cdot f_v = 598,364 \text{ kN} \cdot \text{m}$$

Momen nominal untuk penampang kompak yaitu:

$$M_n = M_p = 598,364 \text{ kN} \cdot \text{m}$$

Momen nominal pengaruh lateral torsional buckling

$$L_P = \frac{790}{\sqrt{f_y}}$$
. $r_y = 4.507,89 \text{ mm}$

$$L_r = r_y \cdot \left(\frac{X_1}{f_y - f_r}\right) \sqrt{1 + \sqrt{1 + X_2(f_y - f_r)^2}}$$

 $L_P < L < L_r \rightarrow Bentang menengah$ Momen nominal dihitung sebagai berikut:

- $M_r = S_x \cdot (f_v f_r) = 391 \text{ kN} \cdot \text{m}$
- $M_p = Z_x \cdot f_v = 598,364 \text{ kN} \cdot \text{m}$

•
$$M_n = C_b \cdot \left[M_r + (M_p - M_r) \frac{L_r - L}{L_r - L_p} \right]$$

 $M_n = 573,869 kN \cdot m$

Momen nominal balok kategori bentang menengah yaitu: $M_n = 573,869 \text{kN} \cdot \text{m}$

ii. Momen nominal balok plat berdinding penuh

Untuk kelangsingan
$$\lambda_{G} \leq \lambda_{p} \rightarrow f_{cr} = f_{y}$$

$$a_{r} = \frac{A_{W}}{A_{f}} = \frac{h \cdot t_{W}}{b \cdot t_{f}} = \frac{379 \cdot 19}{400 \cdot 21} = 0,563$$

$$\frac{h}{t_{w}} = \frac{350 - (2 \cdot 19)}{12} = 26$$

$$K_{g} = 1 - \left[\frac{a_{r}}{1200 + 300 \cdot a_{r}}\right] \left[\frac{h}{t_{w}} - \frac{2550}{\sqrt{f_{cr}}}\right] = 1,05$$

$$M_{n} = K_{g} \cdot S_{x} \cdot f_{cr} = 579,6 \text{ kN} \cdot \text{m}$$

- iii. Tahanan momen lentur
 - a) M_n pengaruh local buckling pada flens $M_n = 598,364 \text{ kN} \cdot \text{m}$
 - b) M_n pengaruh local buckling pada web $M_n = 598,364 \text{ kN} \cdot \text{m}$
 - c) M_n balok plat berdinding penuh $M_n = 579,6 \text{ kN} \cdot \text{m}$
 - d) M_npengaruh lateral torsional buckling $M_n = 573,869 \text{kN} \cdot \text{m}$

M_n terkecil yang menentukan, sehingga tahanan momen lentur yaitu:

$$\phi_b \cdot M_n = 0.9 = 0.9 \cdot 573,869 = 516,482 \text{ kN} \cdot \text{m}$$

Syarat yang harus dipenuhi: $\mathbf{M_{ux}} \le \phi_b \cdot \mathbf{M_n}$
 $\mathbf{M_{ux}} (= 472,845) \le \phi_b \cdot M_n (= 516,482)$
 $\frac{M_{ux}}{\phi_b \cdot M_n} = 0.915 < 1.0 \rightarrow \text{OK}$

iv.Kontrol tahanan geser

Tahanan geser nominal plat badan dengan pengaku dihitung sebagai berikut:

- $A_{\rm w} = t_{\rm w} \cdot h = 3.744 \text{ mm}^2$ $K_{\rm n} = 5 + \frac{5}{{a \choose a}^2} = 5 + \frac{5}{{1500 \choose 32}} = 5,216$
- $\frac{h}{t_{w}} = \frac{312}{12} = 26$
- $1,10 \cdot \sqrt{K_n \cdot \frac{E}{f_v}} = 72,522$
- $1,37 \cdot \sqrt{K_n \cdot \frac{E}{f_v}} = 90,323$

→ Tahanan geser plastis

Tahanan geser nominal dihitung sebagai berikut: $V_n = 0.60 \cdot f_y \cdot A_w = 0.539,136 \text{ kN}$

$$V_n = 0.00 \cdot I_y \cdot A_w = 0.339,130 \text{ kN}$$

 $V_n \cdot \phi = 539,36 \cdot 0.9 = 485,222 \text{ kN}$

Perencanaan stiffener (pengaku)

Stiffener penumpu beban R_b ditentukan oleh:

Lenturpelat sayap

$$R_b = 6.25 \cdot t_f^2 \cdot f_v = 541.5 \text{ kN}$$

• Kuat leleh pelat badan

$$R_b = (2.5k + N) \cdot f_y \cdot t_w \rightarrow k = 39mm$$

 $R_b = 453.6 \text{ kN}$

Kuat tekuk dukung pelat badan

$$\frac{N}{d} = \frac{60}{350} = 0.171 \le 0.2 \text{ maka:}$$

$$R_b = 0.39 \cdot t_w^2 \cdot \left[1 + 3 \left(\frac{N}{d} \right) \cdot \left(\frac{t_w}{t_f} \right)^{1.5} \right] \sqrt{\frac{E \cdot f_y \cdot f_f}{t_w}}$$

 $R_b = 615,972 \text{ kN}$

- Kuat tekuk lateral pelat badanUntuk pelat sayap yang dikekang terhadap rotasi dihitung bila:
 - a) Untuk pelat sayap yang dikekang terhadap rotasi dihitung bila:

$$\frac{\left(\frac{h}{t_W}\right)}{\left(\frac{L}{b_F}\right)} \le 2.3 \quad \rightarrow \frac{\left(\frac{358}{130}\right)}{\left(\frac{6000}{400}\right)} = 1.517 \le 2.3$$

$$R_{b} = \frac{c_{r} \cdot E \cdot t_{w}^{3} \cdot t_{f}}{h^{2}} \left[1 + 0.4 \frac{\left(\frac{h}{t_{w}}\right)^{3}}{\left(\frac{L}{b_{f}}\right)^{3}} \right]$$

 $R_b = 261,776 \text{ kN}$

b) Untuk pelat sayap yang dikekang terhadap rotasi dihitung bila:

$$\frac{\left(\frac{h}{\text{tw}}\right)}{\left(\frac{L}{h_e}\right)} \le 1.7 \quad \rightarrow \frac{\left(\frac{358}{130}\right)}{\left(\frac{6000}{400}\right)} = 1.517 \le 1.7$$

$$R_{b} = \frac{c_{r} \cdot E \cdot t_{w}^{3} \cdot t_{f}}{h^{2}} \left[0.4 \frac{\left(\frac{h}{t_{w}}\right)^{3}}{\left(\frac{L}{b_{f}}\right)^{3}} \right] = 152,498 \text{ kN}$$

$$R_b = \frac{24,08 \cdot t_w^3}{h} \sqrt{E \cdot f_y} = 923,988 \text{ kN}$$

Dari ke-6 nilai R_b diatas diambil nilai R_b yang terkecil yaitu : $R_b = 152,498 \text{ kN}$

$$\phi \cdot R_b = 0.9 \cdot 152,498 \text{ kN} = 137,248 \text{ kN}$$

Kuat tumpu perlu (R_u) pada pelat badan harus memenuhi:

 $R_u \leq \phi \cdot R_b$

 $\mathbf{R_u} (= 378,674 \text{ kN}) > \phi \cdot \mathbf{R_b} (= 137,248 \text{ kN})$ tidak memenuhi syarat, maka harus

dipasang pengaku, sehingga

$$R_{u} - \phi R_{b} \le A_{s} \cdot f_{y}$$

$$A_{s} \ge \frac{R_{u} - \phi R_{b}}{f_{y}} \rightarrow A_{s} \ge 1.005,942 \text{ mm}^{2}$$

Dicoba stiffener lebar 120 mm dan tebal 10 mm dikedua sisi

• Kontrol lebar pengaku (stiffener)

$$b_s = 120 \text{ mm} > \frac{b_f}{3} - \frac{t_w}{2} = 110,6 \text{ mm}$$

Kontrol tebal pengaku (stiffener)

$$t_s = 10 \text{ mm} > \frac{t_f}{2} = \frac{19}{2} = 9,5 \text{ mm}$$

 $\frac{b_s}{t_s} = \frac{120}{10} = 12 \le 0,56 \sqrt{\frac{E}{f_y}} = 16,17$

Jadi diambil stiffener lebar 120 mm dan tebal 10 mm dikedua sisi

• Kontrol pengaku (stiffener)sebagai kolom

$$\begin{split} & \text{A}' = \text{t}_{\text{w}} \cdot 12 \text{t}_{\text{w}} + 2 \text{A}_{Stiff} = 4.128 \text{mm}^2 \\ & I_{xx} = \frac{1}{12} \cdot \text{t}_{\text{s}} \cdot (2 \text{b}_{\text{s}} + \text{t}_{\text{w}})^3 = 13.335.840 \text{ mm}^4 \\ & r_x = \sqrt{\frac{I_{xx}}{\text{A}'}} = \sqrt{\frac{13.335.840 \text{ mm}^4}{4.128 \text{mm}^2}} = 56,838 \text{ mm} \\ & \lambda_c = \frac{k \cdot L}{r_x \cdot \pi} \times \sqrt{\frac{\text{fy}}{\text{E}}} = 0,873 \\ & \text{Untuk } 0,25 < \lambda_c < 1,2 \text{ maka } \omega = \frac{1,43}{1,6-0,6\lambda_c} \\ & \omega = \frac{1,43}{1,6-0,6\cdot0,873} = 1,269 \\ & \text{Syarat: } \text{R}_{\text{u}} \leq \phi_c \cdot \text{A}' \cdot \frac{\text{fy}}{\omega} \\ & \text{R}_{\text{u}} = 378,674 \text{ kN} \leq \phi_c \cdot \text{A}' \cdot \frac{\text{fy}}{\omega} = 633,643 \text{ kN} \\ & \frac{\phi_c \cdot \text{A}' \cdot \frac{\text{fy}}{\omega}}{R_{\text{u}}} = \frac{633,643 \text{ kN}}{378,674} = 1,67 \rightarrow \textit{Efisien} \end{split}$$

Berdasarkan dua profil yang telah dianalisa, maka dapat dipilih profil IWF 350.350.12.19 dengan stiffener (bs=12 mm; ts=10 mm) Sebagai balok hoist crane yang lebih efisien dan aman.

Perencanaan stiffener (pengaku)

Stiffener penumpu beban R_b ditentukan oleh:

Lenturpelat sayap

$$R_b = 6.25 \cdot t_f^2 \cdot f_v = 541.5 \text{ kN}$$

• Kuat leleh pelat badan

$$R_b = (2.5k + N) \cdot f_y \cdot t_w \rightarrow k = 39mm$$

 $R_b = 453.6 \text{ kN}$

Kuat tekuk dukung pelat badan

$$\begin{split} \frac{N}{d} &= \frac{60}{350} = 0,171 \leq 0,2 \text{ maka:} \\ R_b &= 0,39 \cdot t_w^2 \cdot \left[1 + 3 \left(\frac{N}{d} \right) \cdot \left(\frac{t_w}{t_f} \right)^{1,5} \right] \sqrt{\frac{\text{E.f}_y \cdot t_f}{t_w}} \\ R_b &= 615,972 \text{ kN} \end{split}$$

- Kuat tekuk lateral pelat badanUntuk pelat sayap yang dikekang terhadap rotasi dihitung bila:
 - c) Untuk pelat sayap yang dikekang terhadap rotasi dihitung bila:

$$\frac{\left(\frac{h}{\text{tw}}\right)}{\left(\frac{L}{b_f}\right)} \le 2,3 \quad \to \frac{\left(\frac{358}{13}\right)}{\left(\frac{6000}{400}\right)} = 1,517 \le 2,3$$

$$R_b = \frac{C_r \cdot E \cdot t_w^3 \cdot t_f}{h^2} \left[1 + 0,4 \frac{\left(\frac{h}{t_w}\right)^3}{\left(\frac{L}{b_f}\right)^3} \right]$$

$$R_b = 261,776 \text{ kN}$$

d) Untuk pelat sayap yang dikekang terhadap rotasi dihitung bila:

$$\frac{\left(\frac{h}{\mathsf{t_W}}\right)}{\left(\frac{L}{b_f}\right)} \le 1.7 \quad \rightarrow \frac{\left(\frac{358}{13}\right)}{\left(\frac{6000}{400}\right)} = 1.517 \le 1.7$$

$$R_{b} = \frac{C_{r} \cdot E \cdot t_{w}^{3} \cdot t_{f}}{h^{2}} \left[0.4 \frac{\left(\frac{h}{t_{w}}\right)^{3}}{\left(\frac{L}{b_{f}}\right)^{3}} \right] = 152,498 \text{ kN}$$

Kuat tekuk lentur pelat badan

$$R_b = \frac{24,08 \cdot t_w^3}{h} \sqrt{E \cdot f_y} = 923,988 \text{ kN}$$

 $R_b = \frac{^{24,08 \cdot t_w^3}}{^h} \sqrt{E \cdot f_y} = 923,988 \text{ kN}$ Dari ke-6 nilai R_b diatas diambil nilai R_b yang terkecil yaitu : $R_b = 152,498 \text{ kN}$

 $\phi \cdot R_b = 0.9 \cdot 152,498 \text{ kN} = 137,248 \text{ kN}$

Kuat tumpu perlu (R_u) pada pelat badan harus memenuhi:

 $R_{ii} \leq \phi \cdot R_{b}$

 $\mathbf{R}_{\mathbf{u}} (= 378,674 \text{ kN}) > \phi \cdot \mathbf{R}_{\mathbf{b}} (= 137,248 \text{ kN})$ tidak memenuhi syarat, maka harus dipasang pengaku, sehingga

$$R_{u} - \phi R_{b} \le A_{s} \cdot f_{y}$$

$$A_{s} \ge \frac{R_{u} - \phi R_{b}}{f_{y}} \to A_{s} \ge 1.005,942 \text{ mm}^{2}$$

Dicoba stiffener lebar 120 mm dan tebal 10 mm dikedua sisi

Kontrol lebar pengaku (stiffener)

$$b_s = 120 \text{ mm} > \frac{b_f}{3} - \frac{t_w}{2} = 110,6 \text{ mm}$$

• Kontrol tebal pengaku (*stiffener*)

$$t_s = 10 \text{ mm} > \frac{t_f}{2} = \frac{19}{2} = 9.5 \text{ mm}$$

 $\frac{b_s}{t_s} = \frac{120}{10} = 12 \le 0.56 \sqrt{\frac{E}{f_y}} = 16.17$

Jadi diambil stiffener lebar 120 mm dan tebal 10 mm dikedua sisi

• Kontrol pengaku (stiffener)sebagai kolom

$$\begin{split} & \text{A}' = \text{t}_{\text{w}} \cdot 12 \text{t}_{\text{w}} + 2 \text{A}_{Stiff} = 4.128 \text{mm}^2 \\ & I_{xx} = \frac{1}{12} \cdot \text{t}_{\text{s}} \cdot (2 \text{b}_{\text{s}} + \text{t}_{\text{w}})^3 = 13.335.840 \text{ mm}^4 \\ & r_x = \sqrt{\frac{I_{xx}}{\text{A}'}} = \sqrt{\frac{13.335.840 \text{ mm}^4}{4.128 \text{mm}^2}} = 56,838 \text{ mm} \\ & \lambda_c = \frac{k \cdot L}{r_x \cdot \pi} \times \sqrt{\frac{f_y}{\text{E}}} = 0,873 \\ & \text{Untuk } 0,25 < \lambda_c < 1,2 \text{ maka } \omega = \frac{1,43}{1,6-0,6\lambda_c} \\ & \omega = \frac{1,43}{1,6-0,6\cdot0,873} = 1,269 \\ & \text{Syarat: } \text{R}_{\text{u}} \leq \phi_c \cdot \text{A}' \cdot \frac{f_y}{\omega} \\ & \text{R}_{\text{u}} = 378,674 \text{ kN} \leq \phi_c \cdot \text{A}' \cdot \frac{f_y}{\omega} = 633,643 \text{ kN} \\ & \frac{\phi_c \cdot \text{A}' \cdot \frac{f_y}{\omega}}{\text{R}_{\text{u}}} = \frac{633,643 \text{ kN}}{378,674} = 1,67 \longrightarrow Efisien \end{split}$$

Berdasarkan dua profil yang telah dianalisa, maka dapat dipilih profil IWF 350.350.12.19 dengan stiffener (bs= 12 mm; ts= 10 mm) Sebagai balok hoist crane yang lebih efisien dan aman.

V. Kesimpulan

Dari perencaanan balok *hoist crane* dengan metode LRFD berdasarkan SNI 03-1729-2002 pada bab 4, maka penulis mengambil kesimpulan seebagai berikut:

- 1) Dari perhitungan analisis diperoleh momen maksimum akibat beban terfaktor sebesar $M_u = 472,845 \text{ kN}$ dan gaya geser akibat beban terfaktor $V_u = 378,674 \text{ kN}$
- 2) Berdasarkan nilai modulus penampang plastis $(Z_{x \, perlu} = 2,1891 \times 10^6 \, mm)$ di desain balok dengan IWF 400.400.13.21 dan IWF 350.350.12.19
- 3) Kuat tumpu perlu lebih besar dari pada kuat tumpu rencana $(R_U > \phi \cdot R_b)$ sehingga perlu dipasang pengaku (*stiffener*)
- 4) Profil IWF 400.400.13.21 dapat digunakan sebagai balok *crane* dengan pengaku (b_s = 130 mm; t_s = 11 mm) dengan massa = 1.036,018729 kg. Sedangkan profil IWF 350.350.12.19 dapat digunakan sebagai balok crane dengan pengaku (b_s = 120 mm; t_s = 10 mm) dengan massa = 818,93904 kg
- Profil IWF 350.350.12.19 dipilih sebagai balok *crane* yang memenuhi kriteria keamanaan dan lebih ekonomis

Daftar Pustaka

- [1] Anonim, 1983, Peraturan Pembebanan Indonesia Untuk Gedung, Departemen Pekerjaan Umum Manual Kapasitas Jalan Indonesia (MKJI), Februari 1997
- [2] Badan Standar Nasional Indonesia, 2002, *Tata Cara Perencanaan Struktur Baja Untuk Bangunan Gedung*, Departemen Pekerjaan Umum.
- [3] Gunawan, Rudy, 1988, *Tabel Profil Konstruksi Baja*. Yogyakarta: Kanisius
- [4] Setiawan, Agus, 2013, Perencanaan Struktur Baja denan Metode LRFD (Edisi Kedua), Jakarta:Erlangga
- [5] Talenta Siregar, Cinto, 2008, Analisis Tekuk Flens dan Web Profil IWF Pada Strukur Gable Frame dengan Metode Plastis, Medan: Universitas Sumatera Utara