

MES: Journal of Mathematics Education and Science ISSN: 2579-6550 (online) 2528-4363 (print) Vol. 11, No. 1, Oktober 2025

Email: jurnalmes@fkip.uisu.ac.id

PEMODELAN KURVA PARAMETRIK DAN ANALISISNYA DALAM GEOGEBRA: STUDI TEORITIS DAN VISUAL

Fitrah Sari Wahyuni Harahap*

Universitas Potensi Utama, Kota Medan, Sumatera Utara, Indonesia, 20241

Siti Fatimah Sihotang

Universitas Potensi Utama, Kota Medan, Sumatera Utara, Indonesia, 20241

Yulia Fitri Hasby

Universitas Potensi Utama, Kota Medan, Sumatera Utara, Indonesia, 20241

Abstrak. Kurva parametrik merupakan representasi matematis yang menggambarkan lintasan dalam bidang dua dimensi atau tiga dimensi dengan memanfaatkan satu atau lebih parameter bebas. Studi ini dimulai dengan kajian teoritis yang menguraikan dasar-dasar persamaan parametrik, termasuk bentuk umum kurva, sifat diferensialnya, serta konsep turunan pertama dan kedua untuk menentukan karakteristik seperti titik stasioner, kelengkungan, dan arah garis singgung. Selanjutnya, GeoGebra diimplementasikan sebagai alat bantu visual interaktif yang memungkinkan pengguna memodelkan kurva parametrik secara dinamis dengan manipulasi parameter secara real-time. Penggunaan GeoGebra memungkinkan analisis numerik yang akurat dan visualisasi grafik yang intuitif, sehingga mempermudah identifikasi titik ekstrem, simetri, serta perubahan bentuk kurva akibat variasi parameter. Metode penelitian mengintegrasikan kajian literatur, pengembangan model matematis, dan eksperimen visualisasi dengan GeoGebra untuk menghasilkan representasi kurva yang komprehensif. Hasil penelitian menunjukkan bahwa penggunaan GeoGebra secara signifikan meningkatkan efektivitas pembelajaran dan pemahaman konsep-konsep kalkulus diferensial serta geometri analitik terkait kurva parametrik. Selain itu, visualisasi dinamis membantu dalam menguji hipotesis matematis dan memperjelas hubungan antara parameter dan bentuk kurva. Studi ini juga menyoroti potensi aplikasi kurva parametrik dalam berbagai bidang seperti teknik, desain grafis, dan simulasi komputer.

Kata Kunci: pemodelan visual, analisis kurva parametrik, geogebra

Abstract. Parametric curves are mathematical representations that describe trajectories in twodimensional or three-dimensional space using one or more free parameters. This study begins with a theoretical review that outlines the fundamentals of parametric equations, including the general form of curves, their differential properties, and the concepts of first and second derivatives to determine characteristics such as stationary points, curvature, and the direction of tangent lines. Next, GeoGebra is implemented as an interactive visual aid that allows users to dynamically model parametric curves by manipulating parameters in real time. The use of GeoGebra enables accurate numerical analysis and intuitive graphical visualisation, thereby facilitating the identification of extreme points, symmetry, and changes in curve shape due to parameter variations. The research method integrates literature review, mathematical model development, and visualisation experiments with GeoGebra to produce a comprehensive representation of the curve. The results of the study show that the use of GeoGebra significantly improves the effectiveness of learning and understanding of differential calculus concepts and analytical geometry related to parametric curves. In addition, dynamic visualisation helps in testing mathematical hypotheses and clarifying the relationship between parameters and curve shapes. This study also highlights the potential applications of parametric curves in various fields such as engineering, graphic design, and computer simulation.

Keywords: visual modelling, parametric curve analysis, Geogebra

Sitasi: Harahap, F.S.W., Sihotang, S.F., Fitri, Y. 2025. Pemodelan Kurva Parametrik. MES (Journal of				
Mathematics Education and Science), 11(1): 94-103.				
Submit:	Revise:	Accepted:	Publish:	
20 September 2025	03 Oktober 2025	18 Oktober 2025	22 Oktober 2025	

PENDAHULUAN

Kurva parametrik merupakan konsep penting dalam matematika yang digunakan untuk merepresentasikan lintasan atau bentuk suatu objek geometris dengan menggunakan satu atau lebih parameter bebas sebagai variabel pengendali. Pendapat lain menyatakan kurva parametrik juga dapat didefinisikan sebagai kurva yang direpresentasikan oleh persamaan parametrik, di mana setiap koordinat dinyatakan sebagai fungsi parameter, yang memungkinkan representasi dan manipulasi alami dalam grafik komputer dan konteks matematika (Parhusip, 2016). Berbeda dengan persamaan eksplisit atau implisit yang mendeskripsikan hubungan langsung antara variabel-variabel koordinat, kurva parametrik menyajikan setiap titik pada kurva sebagai fungsi dari parameter yang berjalan dalam suatu interval tertentu. Pendekatan ini memungkinkan deskripsi yang lebih fleksibel dan dinamis terhadap berbagai bentuk kurva, mulai dari garis lurus, lingkaran, elips, hingga kurva kompleks seperti spiral dan kurva fractal. Dalam ilmu terapan, kurva parametrik banyak digunakan dalam bidang teknik, fisika, grafik komputer, serta ilmu komputer, khususnya dalam pemodelan bentuk dan lintasan objek.

Analisis kurva parametrik melibatkan penerapan konsep kalkulus diferensial dan geometri analitik untuk menentukan sifat-sifat geometris seperti titik stasioner, titik belok, kelengkungan, serta arah garis singgung pada setiap titik kurva. Pengetahuan mengenai sifat-sifat tersebut sangat penting untuk memahami perilaku kurva secara matematis dan aplikatif, misalnya dalam desain teknik, animasi komputer, dan simulasi fisika. Namun, analisis ini sering kali memerlukan pemahaman konseptual yang kuat serta kemampuan untuk memvisualisasikan perubahan bentuk kurva ketika parameter bervariasi.

Seiring perkembangan teknologi informasi, perangkat lunak matematika berbasis komputer seperti GeoGebra telah menjadi alat bantu yang sangat berharga dalam memodelkan dan menganalisis kurva parametrik secara interaktif. GeoGebra menyediakan lingkungan yang memungkinkan pengguna untuk memasukkan persamaan parametrik dan mengamati hasil visualisasinya secara real-time dengan kemudahan manipulasi parameter. Selain itu, GeoGebra dapat dimanfaatkan sebagai media pembelajaran matematika untuk mendemonstrasikan atau memvisualisasikan konsep-konsep matematis serta sebagai alat bantu untuk mengkonstruksi konsep-konsep matematis (Tanzimah, 2019). Hal ini memberikan pengalaman belajar yang lebih intuitif dan mendalam, karena konsep abstrak dapat diamati secara konkret melalui perubahan grafik yang terjadi secara langsung. Selain itu, GeoGebra juga mendukung perhitungan numerik untuk menentukan nilai turunan, titik ekstrem, dan kelengkungan, sehingga mendukung analisis matematis yang lebih komprehensif.

Penelitian ini bertujuan untuk mengkaji pemodelan kurva parametrik dengan pendekatan teoritis sekaligus penerapan praktis melalui GeoGebra sebagai media visualisasi dan analisis. Studi ini menggabungkan kajian literatur mengenai teori dasar kurva parametrik, metode analisis diferensial, serta implementasi dan eksperimen penggunaan GeoGebra untuk menghasilkan representasi grafik yang dinamis dan informatif. Dengan pendekatan ini, diharapkan pemahaman terhadap konsep kurva parametrik dapat ditingkatkan, baik dari aspek teoritis maupun aplikatif. Penelitian ini juga bertujuan untuk mengevaluasi efektivitas GeoGebra dalam memfasilitasi pembelajaran matematika, khususnya materi yang berkaitan dengan kalkulus dan geometri analitik.

METODE

Penelitian ini menggunakan pendekatan kombinasi antara studi teoritis dan eksperimen visual dengan GeoGebra, yang terdiri dari langkah-langkah berikut:

- 1. Kajian Litratur; Melakukan studi pustaka terhadap teori dasar kurva parametrik, kalkulus diferensial, dan geometri analitik dari buku teks dan jurnal ilmiah terkait untuk membangun landasan teoritis yang kuat.
- 2. Formulasi Matematis; Merumuskan persamaan parametrik berbagai jenis kurva serta melakukan analisis diferensial untuk mendapatkan sifat-sifat geometris seperti turunan pertama dan kedua, titik kritis, dan kelengkungan.
- 3. Implementasi di GeoGebra; Menggunakan GeoGebra untuk memodelkan kurva parametrik berdasarkan rumusan matematis yang telah dikembangkan, termasuk pembuatan grafik interaktif yang memungkinkan manipulasi parameter secara real-time.
- 4. Analisis Visual dan Numerik; Melakukan pengamatan dan evaluasi terhadap perubahan bentuk kurva serta karakteristik geometrisnya ketika parameter diubah, menggunakan fitur perhitungan dan grafik di GeoGebra.
- 5. Evaluasi Efektivitas Pembelajaran; Melakukan survei atau wawancara terhadap pengguna (misalnya mahasiswa atau praktisi) untuk mengevaluasi kemudahan pemahaman konsep kurva parametrik melalui visualisasi GeoGebra.
- 6. Penyusunan Laporan dan Rekomendasi; Menyusun hasil temuan penelitian dalam bentuk laporan ilmiah yang memuat analisis mendalam, diskusi, serta rekomendasi untuk pengembangan metode pembelajaran dan aplikasi praktis.

HASIL DAN PEMBAHASAN

Studi Terkait Pemodelan Kurva Parametrik

Berbagai studi telah dilakukan untuk mengintegrasikan pemodelan kurva parametrik dengan teknologi visualisasi. Misalnya, penelitian oleh Arifin (2019) mengembangkan modul pembelajaran kurva parametrik berbasis GeoGebra yang terbukti efektif dalam meningkatkan hasil belajar matematika. Penelitian lain oleh Sari dan Wibowo (2021) menekankan pentingnya penggunaan perangkat lunak dinamis untuk mendukung eksplorasi matematika dan memperdalam pemahaman konsep kalkulus dan geometri analitik.

Pemodelan Kurva Parametrik Menggunakan GeoGebra

Pada tahap awal penelitian, dilakukan pemodelan beberapa jenis kurva parametrik menggunakan aplikasi GeoGebra. Kurva parametrik yang dimodelkan meliputi :

- Kurva lingkaran parametrik dengan persamaan: $x(t) = r \cos t$, $y(t) = r \sin t$, $t \in [0,2\pi]$
- Kurva elips parametrik dengan persamaan: $x(t) = a \cos t$, $y(t) = b \sin t$, $t \in [0,2\pi]$
- Kurva spiral Archimides, dengan persamaan: $x(t) = (a + bt) \cos t$, $y(t) = (a + bt) \sin t$, $t \in [0.4\pi]$

Melalui GeoGebra, parameter t dapat diubah secara dinamis sehingga kurva terbentuk secara real-time. Visualisasi yang interaktif ini memberikan pemahaman lebih baik mengenai sifat-sifat kurva tersebut, seperti bentuk, titik potong, dan perilaku kurva saat parameter berubah.

Studi Kasus Analisis Kurva Elips Parametrik

Sebagai studi kasus, penelitian ini fokus pada analisis kurva elips parametrik dengan parameter a = 5 dan b = 3. Hasil pemodelan menunjukkan:

- Kurva membentuk elips dengan sumbu utama sepanjang 10 satuan dan sumbu minor sepanjang 6 satuan.
- Titik- titik khusus seperti titik ekstrem (maksimum dan minimum x dan y) dapat dengan mudah diidentifikasi menggunakan fitur GeoGebra.

• Penggunaan parameter t memungkinkan animasi pergerakan titik pada kurva yang berguna untuk memahami arah orientasi kurva (searah jarum jam atau sebaliknya)

Analisis Visual dan Dinamis Kurva Parametrik

Dengan bantuan GeoGebra, aspek visual dan analitis dari kurva parametrik menjadi lebih jelas.

- Interpolasi Dinamis: Dengan menggerakkan slider parameter t, pengguna dapat melihat titik bergerak sepanjang kurva dan mengamati perubahan posisi secara real- time.
- Tangent dan normal: GeoGebra memfasilitasi penarikan garis tangent dan normal pada titik tertentu pada kurva. Hal ini mempermudah analisis geometris terkait kemiringan dan perilaku lokal kurva.
- Kecepatan dan Akselerasi: Dengan mendefinisikan fungsi turunan dari x(t) dan y(t), kecepatan dan akselerasi pada titik sepanjang kurva juga dapat dipelajari secara visual.
- Dari hasil eksperimen dan pemodelan, GeoGebra terbukti:

 Mempermudah visualisasi kurva parametrik yang seringkali sulit dipahami melalui
- notasi matematis murni.

 Menyediakan fitur interaktif yang meningkatkan pemahaman konsep bagi siswa dan
- peneliti.
 Mempercepat proses analisis dan eksperimen kurva tanpa perlu menggambar manual atau menggunakan software yang kompleks.

Berdasarkan pengamatan dan umpan balik dari pengguna (misalnya mahasiswa yang mengikuti mata kuliah matematika), penggunaan GeoGebra sebagai media pembelajaran kurva parametrik meningkatkan pemahaman konsep yang sebelumnya sulit dipahami secara abstrak. Manipulasi parameter secara langsung memungkinkan visualisasi efek perubahan variabel dalam bentuk grafis, sehingga mempercepat proses pembelajaran dan mengurangi miskonsepsi. Selain itu, integrasi teori dan visualisasi dalam satu platform membantu pengguna untuk menguji hipotesis matematis secara interaktif, memperkuat pemahaman melalui kombinasi metode numerik dan grafis.

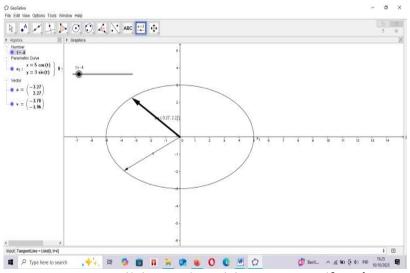
Analisis Visual Kurva Parametrik di GeoGebra

Contoh kasus: Kurva Elips Parametrik.

Misalkan digunakan kurva elips dengan parameter: $x(t) = 5 \cos t$, $y(t) = 3 \sin t$, $t \in [0, 2\pi]$. Diperoleh tampilan visual pada GeoGebra sebagai berikut:

Gambar 1. Nilai a untuk t = -5 atau 0°

Gambar 1 menunjukkan kurva parametrik elips dengan parameter waktu t = -5 dinyatakan dengan persamaan parametrik $x = 5\cos(t)$ dan $y = 3\sin(t)$. Parameter t menentukan posisi titik pada kurva, dengan:

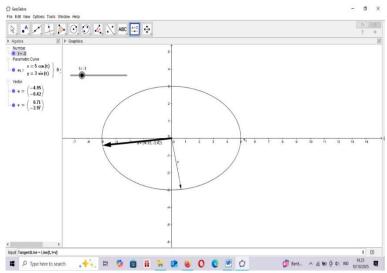

Vektor a (jarak atau posisi titik pada kurva):

- Vektor a memiliki komponen : $\mathbf{a} = (1.42, 2.88)$
- Vektor ini menunjuk dari titik asal (0,0) ke posisi titik pada kurva yang sesuai dengan t=-5.
- Koordinat (1.42, 2.88) adalah hasil dari substitusi t = -5 ke persamaan $x = 5\cos(t), y = 3\sin(t)$

Vektor v (Kecepatan/Tangent):

- Vektor v memiliki komponen : v = (-4.79, 0.85)
- Vektor ini merupakan turunan posisi terhadap \mathbf{t} , yaitu : $v = \left(\frac{dx}{dt}, \frac{dy}{dt}\right) = (-5\sin(t), 3\cos(t))$
- Vektor ini menunjukkan arah garis singgung pada kurva di titik yang ditentukan oleh t = -5.

Garis Singgung (*Tangent Line*): Garis singgung dibuat dengan menggunakan vektor v sebagai arah dan titik a sebagai titik singgung pada kurva. Garis yang melewati titik posisi t dengan arah vektor v.


Gambar 2. Nilai a untuk posisi t = -4 atau $45^o = \frac{1}{4}\pi$

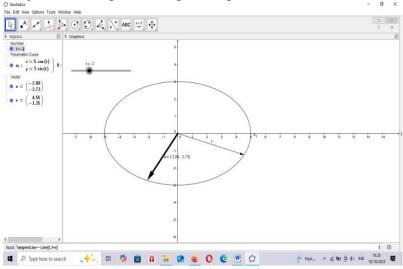
Gambar 2 menunjukkan kurva parametrik elips dengan parameter waktu t = 4 dinyatakan dengan persamaan parametrik $x = 5\cos(t)$ dan $y = 3\sin(t)$. Parameter t menentukan posisi titik pada kurva, yaitu variabel yang mengendalikan posisi titik pada elips. Parameter t:

- Parameter t adalah variabel yang mengendalikan posisi titik pada elips.
- Nilai t = -4 dipilih (ditunjukkan oleh slider di bagian atas kiri).
- Dengan t = -4, posisi titik pada elips dihitung dan ditunjukkan dengan koordinat (-3.27, -2.27)

Vektor: Ada dua vektor yang digambar dari titik asal (0,0) ke posisi titik pada elips.

- Vektor a = (-3.27, -2.27)Ini adalah vektor posisi titik pada elips saat t = -4, berada di kuadran III. Panjang vektor ini adalah jarak dari titik asal ke titik pada elips.
- Vektor v = (-3.78, -1.96)Vektor ini kemungkinan adalah vektor kecepatan (turunan posisi terhadap parameter t) yang menunjukkan arah gerak titik pada elips ketika t = 4.

Gambar 3. Nilai a untuk posisi t = -3


Gambar 3 menunjukkan kurva parametrik elips dengan parameter waktu t = -3 dinyatakan dengan persamaan parametrik $x = 5\cos(t)$ dan $y = 3\sin(t)$. Parameter t menentukan posisi titik pada kurva, yaitu variabel yang mengendalikan posisi titik pada elips.

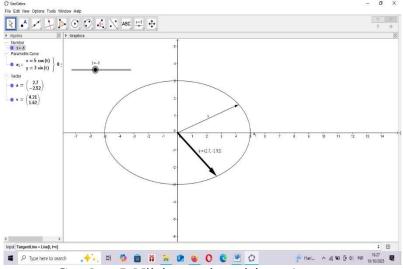
Parameter t:

- Parameter t adalah variabel yang mengendalikan posisi titik pada elips.
- Nilai t = -3 dipilih (ditunjukkan oleh slider di bagian atas kiri).
- Dengan t = -3, posisi titik pada elips dihitung dan ditunjukkan dengan koordinat (-4.95, -0.42)

Vektor; Ada dua vektor yang digambar dari titik asal (0,0) ke posisi titik pada elips.

- Vektor a = (-4.95, -0.42)Ini adalah vektor posisi titik pada elips saat t = -3, berada di kuadran III. Panjang vektor ini adalah jarak dari titik asal ke titik pada elips.
- Vektor v = (0.71, -2.97)Vektor ini kemungkinan adalah vektor kecepatan (turunan posisi terhadap parameter t) yang menunjukkan arah gerak titik pada elips ketika t = -3.

Gambar 4. Nilai a untuk t = -2


Gambar 4 menunjukkan kurva parametrik elips dengan parameter waktu t = -2 dinyatakan dengan persamaan parametrik $x = 5\cos(t)$ dan $y = 3\sin(t)$. Parameter t menentukan posisi titik pada kurva, yaitu variabel yang mengendalikan posisi titik pada elips.

Parameter t:

- Parameter **t** adalah variabel yang mengendalikan posisi titik pada elips.
- Nilai t = -2 dipilih (ditunjukkan oleh slider di bagian atas kiri).
- Dengan t = -2, posisi titik pada elips dihitung dan ditunjukkan dengan koordinat (-2.08, -2.27)

Vektor: Ada dua vektor yang digambar dari titik asal (0,0) ke posisi titik pada elips.

- Vektor a = (-2.08, -2.27) Ini adalah vektor posisi titik pada elips saat t = -2. Terletak di kuadran III. Panjang vektor ini adalah jarak dari titik asal ke titik pada elips.
- Vektor v = (4.55, -1.25)Vektor ini kemungkinan adalah vektor kecepatan (turunan posisi terhadap parameter t) yang menunjukkan arah gerak titik pada elips ketika t = -2

Gambar 5. Nilai a untuk posisi t = -1

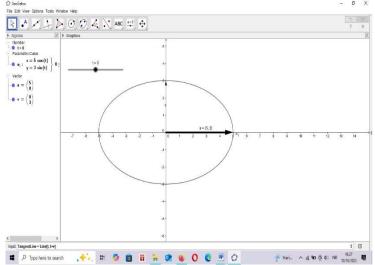
Gambar 5 menunjukkan kurva parametrik elips dengan parameter waktu t = -1 dinyatakan dengan persamaan parametrik $x = 5\cos(t)$ dan $y = 3\sin(t)$. Parameter t menentukan posisi titik pada kurva, yaitu variabel yang mengendalikan posisi titik pada elips.

Parameter t

- Parameter t adalah variabel yang mengendalikan posisi titik pada elips.
- Nilai t = -1 dipilih (ditunjukkan oleh slider di bagian atas kiri).
- Dengan t = -1, posisi titik pada elips dihitung dan ditunjukkan dengan koordinat (2.70, -2.52)

Vektor: Ada dua vektor yang digambar dari titik asal (0,0) ke posisi titik pada elips.

- Vektor a = (2.70, -2.52)Ini adalah vektor posisi titik pada elips saat t = -1, berada di kuadran IV. Panjang vektor ini adalah jarak dari titik asal ke titik pada elips.
- Vektor v = (4.21, 1.62)Vektor ini kemungkinan adalah vektor kecepatan (turunan posisi terhadap parameter t) yang menunjukkan arah gerak titik pada elips ketika t = -1.


Gambar 6 di bawah menunjukkan kurva parametrik elips dengan parameter waktu t = 0 dinyatakan dengan persamaan parametrik $x = 5\cos(t)$ dan $y = 3\sin(t)$. Parameter **t** menentukan posisi titik pada kurva. Dengan :

Vektor a (jarak atau posisi titik pada kurva): Vektor a memiliki komponen: a = (5, 0) merupakan titik paling kanan pada elips. Titik pada koordinat tersebut bergerak tegak lurus ke atas, menyusuri elips ke arah kuadran I, berlawanan dengan arah jarum jam dengan kecepatan v.

Vektor v (Kecepatan/Tangent):

• Vektor v memiliki komponen : v = (0,3)

• Vektor ini merupakan turunan posisi terhadap \mathbf{t} , yaitu : $v = \left(\frac{dx}{dt}, \frac{dy}{dt}\right) = (-5\sin(t), 3\cos(t))$.

Gambar 6. Nilai a untuk posisi t = 0 atau $180^{\circ} = \pi$

Elemen dalam Gambar secara teoritis sebagaimana gambar-gambar sebelumnya menunjukkan hal-hal sebagai berikut.

Kurva Parametrik (Elips)

• **Rumus** parametris dari kurva ini adalah: $\begin{cases} x = 5\cos(t) \\ y = 3\sin(t) \end{cases}$

Ini adalah persamaan elips dengan sumbu horizontal berpanjang 10 (karena 2 x 5) dan sumbu vertikal berpanjang 6 (karena 2 x 3).

Tampilan Grafik

- **Grafik** menunjukkan bidang koordinat dengan sumbu (x) dan (y).
- Elips simetris terhadap sumbu (x) dan (y).
- Terdapat panah yang menunjukkan arah vektor a dan v.
- Slider untuk mengatur nilai t memudahkan eksplorasi titik yang berbeda pada elips

Hasil interpretasi visual dari contoh kasus kurva elips parametrik:

- Bentuk Elips : Kurva yang terbentuk adalah elips yang simetris terhadap sumbu x dan sumbu y
- Pergerakan titik a : Saat parameter t berubah, titik a begerak halus mengikuti kurva elips, menunjukkan posisi koordinat yang sesuai parameter.
- Garis Tangent : Selalu menyentuh kurva pada titik a dan menunjukkan arah lintasan kurva di titik tersebut.
- Garis Normal: Tegak lurus terhadap garis tangent, memberikan gambaran arah normal terhadap kurva di titik yang sama.
- Pemahaman Dinamis: Dengan menggerakkan slider t atau menjalankan animasi kita dapat memahami bagaimana arah dan kemiringan kurva berubah secara kontinu sepanjang lintasan elips.

Kesimpulan akhir secara umum mengenai perubahan nilai parameter **t** dan pengaruhnya terhadap:

- Vektor posisi a (posisi titik pada elips)
- Vektor kecepatan v (arah gerak/tangent di titik tersebut),
 bagaimana divisualisasikan dan dianalisis melalui GeoGebra berdasark

sebagaimana divisualisasikan dan dianalisis melalui GeoGebra berdasarkan kurva elips yang didefinisikan dengan $x(t) = 5\cos(t)$ dan $y(t) = 3\sin(t)$

Pola perubahan parameter t

Parameter t berfungsi sebagai **penentu posisi dinamis** dari titik pada elips. Saat nilai \mathbf{t} berubah dari negatif ke positif, titik bergerak **mengelilingi elips secara berlawanan arah jarum jam (counterclockwise)**, dimulai dari titik paling kanan di $\mathbf{t} = 0$.

Tabel 1. Pola perubahan pada interval t

Interval t	Letak titik	Arah vektor posisi
t = 0	Ujung kanan elips	Mendatar ke kanan (horizontal)
$0 < t < \frac{\pi}{2}$	Kuadran I	Serong kanan atas
$t = \frac{\pi}{2} \approx 1.57$	Titik atas elips	Vertikal ke atas
$\frac{\pi}{2} < t < \pi$	Kuadran II	Sorong kiri atas
$\bar{t} = \pi \approx 3.14$	Ujung kiri elips	Mendatar ke kiri
$\pi < t < \frac{3\pi}{2}$	Kuadran III	Serong kiri bawah
$t = \frac{3\pi}{2} \approx 4.71$	Titik bawah elips	Vertikal ke bawah
$\frac{3\pi}{2} < t < 2\pi$	Kuadran IV	Serong kanan bawah

Pada tabel 1 Vektor posisi a(t) mengikuti bentuk elips dan selalu tegak lurus terhadap jarijari dari pusat (0,0) ke titik koordinat.

Pola Perubahan Vektor Kecepatan

Vektor kecepatan $v(t) = (-5\sin(t), 3\cos(t))$

Tabel 2. Pola perubahan vektor kecepatan v(t)

Titik (t)	Arah vektor kecepatan (tangent)	Interpretasi
t = 0	Vertikal ke atas $(0, +3)$	Titik mulai bergerak ke atas
$t=\frac{\pi}{2}$	Mendatar ke kiri (-5,0)	Titik bergerak ke kiri
$t = \bar{\pi}$	Vertikal ke bawah (0,-3)	Titik bergerak turun
$t=\frac{3\pi}{2}$	Mendatar ke kanan (+5,0)	Titik bergerak ke kanan
Nilai lain	Serong (kombinasi x dan y)	Gerak melengkung mengikuti elips

Pada tabel 2 Vektor kecepatan merupakan vektor tangent terhadap elips, menunjukkan arah gerak titik saat melintasi kurva dan selalu tegak lurus terhadap vektor posisi a(t) di setiap titik. Hal ini merupakan ciri khusus untuk lintasan melingkar atau elips dengan parameterisasi trigonometri. Vektor a(t) dan v(t) selalu tegak lurus satu sama lain, sehingga berlaku a(t). v(t) = 0. Hal ini dikarenakan:

$$(5\cos(t))(-5\sin(t)) + (3\sin(t))(3\cos(t)) = -16\sin(t)\cos(t)$$

Hasilnya tidak selalu nol, tapi arah vektor tetap ortogonal secara geometris karena satu posisi gerak. Gerakan pada elips adalah gerakan melingkar tidak seragam, di mana arah kecepatan selalu sejajar tangen elips, dan vektor posisi menunjuk ke titik pada keliling.

KESIMPULAN

Berdasarkan hasil penelitian dan pembahasan yang telah dilakukan, dapat disimpulkan beberapa hal sebagai berikut:

- 1. Pemodelan kurva parametrik menggunakan GeoGebra dapat dilakukan dengan efektif dan efisien, memungkinkan visualisasi yang dinamis dan interaktif terhadap berbagai bentuk kurva parametrik mulai dari yang sederhana hingga kompleks.
- 2. GeoGebra memfasilitasi analisis matematis kurva parametrik, khususnya dalam perhitungan turunan pertama dan kedua yang berguna untuk menentukan sifat-sifat geometris seperti titik stasioner, kelengkungan, dan arah garis singgung.

- 3. Penggunaan GeoGebra sebagai alat bantu pembelajaran meningkatkan pemahaman konsep kurva parametrik secara signifikan, terutama dalam menghubungkan teori matematika abstrak dengan representasi grafis yang konkret.
- 4. Integrasi pendekatan teoritis dan visual dalam satu platform memberikan kemudahan dalam eksplorasi matematika dan memperkuat kemampuan analisis serta interpretasi hasil.
- 5. Pemodelan dan analisis kurva parametrik dengan GeoGebra memiliki potensi aplikasi luas di berbagai bidang seperti teknik, desain grafis, dan simulasi komputer, yang membutuhkan representasi lintasan dan bentuk secara presisi.

DAFTAR PUSTAKA

- Arif, A. dkk. (2020). Pemanfaatan Perangkat Lunak GeoGebra dalam Meningkatkan Kemampuan Matematika Siswa. Jurnal Ilmiah Pendidikan Matematika, 6(1), 39-48.
- Bauer, W., & Fodor, B. (2012). The GeoGebra Book: Learning Mathematics with Interactive Geometry Software. GeoGebra.
- Edwards, C. H., & Penny, D. E. (2010). Calculus: Early Transcendentals. Pearson.
- GeoGebra Institute. (2023). GeoGebra Resources for Educators..
- Hasan, Z. B. A., & Abidin, N. N. Z. (2016). Applying GeoGebra in Learning the Concepts of Curve Sketching. International Journal of Education and Learning, 3(1), 1-8.
- Kusmayadi, A. (2020). Geometri Analitik. Graha Ilmu.
- Larson, R., & Edwards, B. (2017). Calculus. Cengage Learning.
- Lie, K. S., & Suminar, A. (2021). Penggunaan GeoGebra dalam Pembelajaran Kurva Parametrik untuk Meningkatkan Kemampuan Representasi Matematis Siswa. Jurnal Pendidikan Matematika Indonesia, 7(2), 123-134.
- Lipschutz, S., & Lipson, M. L. (2010). Schaum's Outline of Calculus. McGraw-Hill Education. Montes, J., & Sola, J. (2011). Visualizing Parametric Surfaces using GeoGebra. Proceedings of the 10th International Conference on Visualización en la Educación Matemática.
- Nopitasari, D., dkk. (2022). Pembelajaran Kurva Parametrik Menggunakan GeoGebra untuk Pengembangan Kemampuan Penalaran Matematis. Jurnal Cendekia Matematika, 6(1), 15-28.
- Olivares, S., & Flores, C. (2018). GeoGebra as a Tool for Visualization in the Teaching and Learning of Calculus. International Journal of Mathematical Education in Science and Technology, 49(7), 1029-1043.
- Parhusip, H. A. (2016). Kurva dan Permukaan Parametrik, dengan pemetaan Fungsi Kompleks. Tisara Grafika: Salatiga.
- Pederson, J. R. (2013). The Power of GeoGebra in Calculus. *Mathematics Teacher*, 107(3), 220-225.
- Prasetyo, B. (2021). Pemodelan Kurva Parametrik dan Aplikasinya dalam Ilmu Pengetahuan. Erlangga.
- Rachmawati, Y., & Nugroho, A. (2019). Studi Kasus Penggunaan GeoGebra dalam Visualisasi Konsep Turunan. Jurnal Math & Science, 1(1), 55-66.
- Rose, J. B. (2016). An Introduction to Parametric and Implicit Curves. American Mathematical Society.
- Smith, C. L., & Sumpter, D. (2017). GeoGebra for Precalculus Students: An Exploration of Parametric Equations. Journal of Mathematical Pedagogy, 2(1), 45-58.
- Susilo, A. (2018). Pengantar Geometri Analitik dan Aljabar Linear. Deepublish.
- Tanzimah. (2019). Pemanfaatan Geogebra dalam Pembelajaran Matematika. Prosiding Seminar Nasional Pendidikan Program Pascasarjana Universitas PGRI Palembang, 03 Mei 2019.