PENERAPAN PARTIAL LEAST SQUARE-MODIFIED FUZZY CLUSTERING UNTUK SEGMENTASI DALAM PEMODELAN DATA PENGIRIMAN PAKET JNE MEDAN
Abstract
JNE Express is one of the companies engaged in the field of shipping goods, the high level of shipping goods carried out and the many types of goods and types of services available at JNE Express, therefore knowledge is needed regarding the variables that affect the level of shipping goods and segmentation of the types of goods to be shipped. In this study, it is suspected that the type of service and special handling variables on the package affect the level of shipping goods carried out by JNE Express, Medan branch in the outbound unit. The approach used to determine the relationship between latent variables and model segmentation in shipping data is PLS-MFC (Partial Least Square-Modified Fuzzy Clustering). The results of the study showed that all variable indicators were significant where 4 of the 5 services type variable indicators were significant to the quantity of shipping goods, and 2 of the 2 special handling variable indicators were significant. The optimal segment results obtained based on the lowest FPI and NCE values were 2 segments or classes with an FPI value of 0.998 and an NCE value of 1.242. Where the exogenous latent variable that affects the high quantity of goods is the type of service with the REG indicator
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Darma, Surya. (2013). Pendekatan, Jenis, dan Metode Penelitian Pendidikan. Jakarta: Drijen PMPTK.
Evi, Tiolina dan Rachbini, Wirdarto. (2022). Partial Least Square: Teori dan Praktek. Jakarta: Penerbit Tahta Media Groups.
Irwan dan Sauddin, Adnan. (2021). Satatistik Multivariat. Sulawesi Selatan: Alauddin University Press.
JNE. (2020). Buku paduan JNE update April 2020 (revisi Juni).
Matrias, L. (2021). Statistik Deskriptif sebagai Kumpulan Informasi. Jurnal Ilmu Perpustakaan dan Informasi, 16(1)
Mukid, Moch Abdul. (2023). Segmentasi Dalam Partial least Square Structural Equation Model menggunakan Modified Fuzzy Clustering. Disertasi. Surabaya: Institut Teknologi Sepuluh November. https://repository.its.ac.id/104888/
Mukid, Moch Abdul., Otok, Bambang Widjanarko., Suharsono, Agus. (2022). Segmentation in Structural Equation Modeling Using a Combination of Partial Least Square and Modified Fuzzy Clustering. Symmetry, 14(11): 2431;
Mukid, Moch Abdul., Otok, Bambang Widjanarko., Suparti. (2023). Simulation Study forUnderstanding The Performance of Partial Least Square-Modified Fuzzy Clustering (PLSMFC) in Finding Groups Under Structural Equation Model. Media Statistika 16(1): 76-87
Prasetyo, Stevanus Sandy., dkk (2020). Penerapan Fuzzy C-Means Kluster Untuk Segmentasi Pelanggan E-Commerce Dengan Metode Recency Frequency Monetary (RFM). Jurnal Gausian, 9(4): 421-433
Sholiha, Eva Ummi Nikmatus. (2020). Structural Equation Modeling-Partial Least Square for Health Modeling of District/city in East Java. Jurnal Sains dan Seni ITS, 4(2): 2337-3520
Sugiyono. (2021). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta.
Suhartini, Nanih. (2014). Implementasi Logika Fuzzy Pada Penentuan Karakteristik Teknik Disain Perancangan Produk Mainan Anak. Jurnal teknologi dan Rekayasa, 19(3)
Sulistya, Febriana., Sudarno, Agusrusgiono. (2015). Penerapan Response Based Unit Segmentation in Partial Least Square (REBUS-PLS) Untuk Analisis dan Pengelompokan Wilaya. Jurnal Gausian, 9(3), 364-375
Wallis, W. (2014). The Nature of Statistics. New York: Dover Publications.
Wold, H. (2018). Partial Least Square. In G.A. Marcoulides, Modern Methods for Business Research (p. 295). New York: Psychology Press.
Yamin, S., Kurniawan, H. (2011). Generasi Baru Mengolah Data Penelitian dengan Partial Least Square Path Modeling: Aplikasi dengan Software XLSTAT, SmartPLS, dan Visual PLS. Jakarta: Salemba Infotek
DOI: https://doi.org/10.30743/mes.v10i1.10202
Refbacks
- There are currently no refbacks.