PEMODELAN MATEMATIKA PADA KASUS INFEKSI COVID-19

Debora Exaudi Sirait, Erwin Sirait, Imelda Sirait

Abstract


One of the viruses that cause infectious diseases is the corona virus. Corona viruses can cause more serious diseases such as the Severe Acute Respiratory Syndrome-Corona Virus which was epidemic in 2003, the Middle East Respiratory Syndrome-Corona Virus outbreak in 2012 and the 2019 Coronavirus Disease which was epidemic at the end of 2019. The ordinary linear differential equation is an equation differential in which all derivatives appear in linear form and no coefficients depend on the dependent variable. The coefficient can be a function of the independent variable, in which case the differential equation is a linear differential equation with changing coefficients. Based on the relatively large number of cells that are susceptible to infection (S), over time it will decrease and towards a zero value against high immunity, and people under surveillance and patients in care (E) with time will decrease towards high immunity. Meanwhile, the number of infected cells (I) at one time will reach a highest point, which indicates the maximum number of infected cells and gradually decreases with time towards a high increase in immunity. Because fewer S, E, and I are infected, the amount of virus in the body (R) also decreases.


Keywords


mathematical models, differential equations, linear differential equations

References


Anwar, F. (Januari 2021). Kasus Corona di Indonesia 19 Januari 2021 Tambah 10.365, Total

380, Available: http://health.detik.com. [diakses 11 November 2022].

Debora, Rendy, & Rahmi. (2018). Transmission Dinamics Model of Dengue Fever. IOP Conference Series: Materials Science and Engineering. Vol. 300. No. 1. IOP Publishing, 2018.

Hariadi, W., & Sulantari. (2021). Aplication ARIMA Model for Forecasting

Additional Positive Cases of Covid-19 in Jember. Enthusiastic: International

Journal of Statistics and Data Science, 1(1), p. 22-27.

Khris, M., & Asih, T.S.N. (2018). Pengantar Pemodelan Matematika. Semarang: FMIPA UNNES.

Nurdeni., Lestari, W., & Seruni. (2017). Laju pertumbuhan bakteri S. Aerous melalui pendekatan persamaan differensial. Ejournal matematika, 6(3).

Pasaribu, R.H., Harahap, Z.I.S., Putra, B.A., & Siregar, S.L.A. (2020). Aplikasi

pemodelan matematika dalam memodelkan penyebaran virus Covid-19 di

Indonesia," SENATIK, 1(5), pp. 194-199

Prasetya, A. (02 Maret 2020). 2 WNI Terdeteksi Virus corona sejak Minggu 1 Maret. Available: http://m.detik.com/news/berita/d-4921/2-wni-terdeteksi-positif-corona-sejak-minggu-1-maret. [diakses 11 November 2022].

Rina, I., & Husna, R. (2019). Aplikasi Persamaan Differensial pada Model Pertumbuhan Populasi dengan Pertumbuhan Terbatas. Sainstek : Jurnal Sains dan Teknologi. 11 (1) : 22 - 27

Siregar, R. (2016). Persamaan Differensial Eksak dengan Faktor Integrasi. MES: Journal Mathematics Education and Science, 2(1).

Supriyono, G.P.M.K. (2017). PEMODELAN MATEMATIKA PADA PENYEBARAN PENYAKIT DIFTERI DENGAN PENGARUH KARANTINA DAN VAKSINASI. UNNES Journal of Mathematics, 6(1), pp. 25-35

WHO. (11 March 2020). WHO Director-General's opening remarks at the media briefing on

COVID-19. Available: https://www.who.int/dg/speeches/detail/who-director-general-s-openingremarks-at-the-media-briefing-on-covid-19---11-march-2020. [diakses 11 November 2022].

Yuliana. (2020). Corona Virus Diseases (Covid-19); Sebuah Tinjawan Literatur. Wellness and Healthy Magazine, 2(1), pp. 187-192




DOI: https://doi.org/10.30743/mes.v8i2.7189

Refbacks

  • There are currently no refbacks.