Analisis Dinamik Model Matematika Penyebaran Penyakit HIV/AIDS dengan Edukasi Dan Art Treatment

Mohamad Syafii, La Ode Sabran, Ilham Dangu Rianjaya

Abstract


Mathematical models are often used to describe phenomena in the field of biology, such as the spread of infectious diseases, one of which is HIV/AIDS. The prevention of HIV/AIDS is through education on the dangers of HIV/AIDS, and ART treatment for HIV positive individuals to increase immunity. The purpose of this study is to analyze the dynamic mathematical model of the transmission of HIV/AIDS with ART treatment and education. This research is a literature study. This study develops the SITA model, by including compartments of susceptible individuals who are aware of the spread of HIV/AIDS and add several parameters to the model. Based on the mathematical model used, two equilibrium points are obtained, namely the disease-free equilibrium point and the endemic equilibrium point, the basic reproduction number and stability analysis around the stability point. Based on the data used, a simulation of the transmission of HIV/AIDS was obtained at both equilibrium points. The stability analysis shows that the disease-free equilibrium point is locally asymptotically stable if R0<1.

Keywords


Epidemiology, HIV/AIDS, Public Awareness, Stability, Mathematical Modeling, Equilibrium Point

References


Arias, R., Angeles, K. De, Maleki, S., & Ahangar, R. R. (2022). Mathematical Modeling of The HIV-AIDS Epidemic. Open Access Library Journal, Vol. 9, 1–15. https://doi.org/10.4236/oalib.1107972

Boyce, W. E., & Diprima, R. C. (2009). Elementary Differential Equation and Boundary Value Problems 9 th Edition. John Wiley & Sons Inc.

Driessche, P. Van Den, & Watmough, J. (2002). Reproduction Numbers and Sub-threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 18, 29–48.

Faisah, Toaha, S., & Kasbawati. (2018). Analisis Kestabilan Model Matematika Penyebaran Penyakit HIV Dengan Klasifikasi Gejala Pada Penderita. Jurnal Penelitian Matematika Dan Pendidikan Matematika, 15(2), 106–118.

Finizio, N., & Ladas, G. (1988). Persamaan Diferensial Biasa Dengan Penerapan Modern. Erlangga.

Haryanto, D., Kusumastuti, N., & Prihandono, B. (2015). Pemodelan Matematika Dan Analisis Kestabilan Model Pada Penyebaran HIV-AIDS. Buletin Ilmiah Mat. Stat. Dan Terapannya, 04(2), 101–110.

Jafaruddin, Pangaribuan, R. M., Aryanto, & Henukh, I. A. (2017). Analisis Kestabilan Model Host-Vector Transmisi HIV/AIDS Pada Pengguna Jarum Suntik. Jurnal Matematika, 7(1), 1–11. https://doi.org/10.24843/jmat.2017.v07.i01.p77

Kasbawati. (2011). Analisis Numerik Model Epidemiologi SIR dengan Faktor Difusi. JMSK Jurnal Matematika, Statistika, Dan Komputasi, 7(2), 98–107.

Lamusu, M. F., Mamula, D., & Muhsana, F. (2019). Analisis Kestabilan Titik Tetap Pada Model Matematika Penyebaran HIV/AIDS. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 7(1), 15–24. https://doi.org/10.34312/euler.v7i1.10329

Maimunah, & Aldila, D. (2018). Mathematical Model for HIV Spreads Control Program with ART Treatment. Journal of Physics: Conference Series, 974(1), 1–14. https://doi.org/10.1088/1742-6596/974/1/012035

Ogunlaran, O. M., & Oukouomi Noutchie, S. C. (2016). Mathematical Model for an Effective Management of HIV Infection. BioMed Research International, 2016, 1–6. https://doi.org/10.1155/2016/4217548

Perko, L. (2000). Differential Equations and Dynamical System 3rd editions. Springer.

Saltina, Achmad, N., Resmawan, & Nuha, A. R. (2022). Model Matematika Tipe SEIQR Pada Penyebaran Penyakit Difteri. Majalah Ilmiah Matematika Dan Statistika, 22(1), 14–29. https://jurnal.unej.ac.id/index.php/MIMS/index

Snyder, H. (2019). Literature Review as a Research Methodology: An Overview and Guidelines. Journal of Business Research, 104(August), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Sugiyono. (2015). Metode Penelitian Pendidikan. Alfabeta.

Zhai, X., Li, W., Wei, F., & Mao, X. (2023). Dynamics of an HIV/AIDS Transmission Model with Protection Awareness and Fluctuations. Chaos, Solitons and Fractals, 169(November 2022), 113224. https://doi.org/10.1016/j.chaos.2023.113224




DOI: https://doi.org/10.30743/mes.v9i1.7924

Refbacks

  • There are currently no refbacks.