Pemodelan Dinamika Pejudi Muda

Susila Bahri, Erfrido Axcel Pratama, Efendi Efendi

Abstract


Perjudian di kalangan pemuda cenderung menyebar, menyebabkan banyak individu muda menghadapi masalah terkait judi. Oleh karena itu, penelitian ini menggali lebih dalam tentang perilaku berjudi di kalangan pemuda usia 16-24 tahun, dengan tujuan mengidentifikasi pola dan trennya. Penelitian kami juga mencakup analisis stabilitas titik keseimbangan yang mengatur prevalensi judi dalam kelompok demografis ini. Dalam penelitian ini, kami fokus utamanya pada tiga kompartemen, yaitu pejudi tak bermasalah, pejudi berisiko, dan pejudi bermasalah. Pusat perhatian kami terletak pada pemahaman intensitas masalah terkait judi dalam kompartemen-kompartemen ini. Untuk memberikan perspektif yang komprehensif, kami telah mewakili setiap kompartemen ini secara visual dalam sebuah grafik komposit tunggal. Visualisasi ini memungkinkan untuk mengamati dan menganalisis tren dalam setiap kompartemen selama 50 tahun ke depan, memberikan gambaran potensial tentang pola perilaku berjudi di kalangan pemuda. Hasil yang diperoleh dari penelitian ini adalah Titik Keseimbangan Bebas Masalah Judi (1,0,0),  dan titik keseimbangan untuk judi endemik saat α = 0 adalah  , yaitu . Selain itu, perhitungan Angka Reproduksi Dasar, , menyoroti potensi peningkatan jumlah individu yang rentan terhadap judi. Penelitian ini memberikan wawasan berharga tentang dinamika judi di kalangan pemuda, yang menjadi dasar untuk strategi kesehatan masyarakat dan intervensi yang efektif.

Keywords


Analisis kestabilan; Angka reproduksi dasar; Model matematika; Pejudi muda

References


Aguiar, M., Anam, V., Blyuss, K. B., Estadilla, C. D. S., Guerrero, B. V., Knopoff, D., Kooi, B. W., Srivastav, A. K., Steindorf, V., & Stollenwerk, N. (2022). Mathematical models for dengue fever epidemiology: A 10-year systematic review. Physics of Life Reviews, 40, 65–92. https://doi.org/10.1016/j.plrev.2022.02.001

André, F., Håkansson, A., Johansson, B. A., & Claesdotter-Knutsson, E. (2022). The prevalence of gaming and gambling in a child and adolescent psychiatry unit. Journal of Public Health Research, 11(2), 227990362211041. https://doi.org/10.1177/22799036221104160

Brauer, F., Castillo-Chavez, C., & Feng, Z. (2019). Epidemic Models (pp. 117–178). https://doi.org/10.1007/978-1-4939-9828-9_4

Budiman, R., Romadini, N. A., Herwandi Aziz, M. A., & Pratama, A. G. (2022). The Impact of Online Gambling Among Indonesian Teens and Technology. IAIC Transactions on Sustainable Digital Innovation (ITSDI), 3(2), 162–167. https://doi.org/10.34306/itsdi.v3i2.559

Calluso, C., Pettorruso, M., Tosoni, A., Carenti, M. L., Cannito, L., Martinotti, G., di Giannantonio, M., & Committeri, G. (2020). Cognitive dynamics of intertemporal choice in gambling disorder. Addictive Behaviors, 109, 106463. https://doi.org/10.1016/j.addbeh.2020.106463

Davies, N. H., Roderique-Davies, G., Drummond, L. C., Torrance, J., Sabolova, K., Thomas, S., & John, B. (2023). Accessing the invisible population of low-risk gamblers, issues with screening, testing and theory: a systematic review. Journal of Public Health, 31(8), 1259–1273. https://doi.org/10.1007/s10389-021-01678-9

Do, T. S., & Lee, Y. S. (2014). A differential equation model for the dynamics of youth gambling. Osong Public Health and Research Perspectives, 5(4), 233–241. https://doi.org/10.1016/j.phrp.2014.06.008

Esparza-Reig, J., Guillén-Riquelme, A., Martí-Vilar, M., & González-Sala, F. (2021). A Reliability Generalization Meta-analysis of the South Oaks Gambling Screen (SOGS). Psicothema, 33(3), 490–499. https://doi.org/10.7334/psicothema2020.449

Frisone, F., Settineri, S., Sicari, P. F., & Merlo, E. M. (2020). Gambling in adolescence: a narrative review of the last 20 years. Journal of Addictive Diseases, 38(4), 438–457. https://doi.org/10.1080/10550887.2020.1782557

Håkansson, A. (2020). Changes in Gambling Behavior during the COVID-19 Pandemic—A Web Survey Study in Sweden. International Journal of Environmental Research and Public Health, 17(11), 4013. https://doi.org/10.3390/ijerph17114013

Hendrich Juk Abeth, Esti Royani, & Salmonius. (2021). Penegakkan Hukum Pidana Dalam Rangka Penanggulangan Perjudian di Masyarakat. Collegium Studiosum Journal, 4(2), 88–97. https://doi.org/10.56301/csj.v4i2.483

Hicklin, K., & Hassmiller Lich, K. (2020). Mathematical Modeling in Population Health Research. In Complex Systems and Population Health (pp. 157–170). Oxford University Press. https://doi.org/10.1093/oso/9780190880743.003.0011

King, S. M., Wasberg, S. M. H., & Wollmuth, A. K. (2020). Gambling problems, risk factors, community knowledge, and impact in a US Lao immigrant and refugee community sample. Public Health, 184, 17–21. https://doi.org/10.1016/j.puhe.2020.03.019

Kong, Y., Li, T., Wang, Y., Cheng, X., Wang, H., & Lei, Y. (2021). Dynamics analysis of an online gambling spreading model on scale-free networks. Advances in Difference Equations, 2021(1), 11. https://doi.org/10.1186/s13662-020-03165-z

Kucharski, A. J., Russell, T. W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R. M., Sun, F., Jit, M., Munday, J. D., Davies, N., Gimma, A., van Zandvoort, K., Gibbs, H., Hellewell, J., Jarvis, C. I., Clifford, S., Quilty, B. J., Bosse, N. I., … Flasche, S. (2020). Early dynamics of transmission and control of COVID-19: a mathematical modelling study. The Lancet Infectious Diseases, 20(5), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4

Latvala, T., Lintonen, T., & Konu, A. (2019). Public health effects of gambling – debate on a conceptual model. BMC Public Health, 19(1), 1077. https://doi.org/10.1186/s12889-019-7391-z

Lee, Y. S., & Do, T. S. (2013). A mathematical modeling approach to gambling among older adults. Applied Mathematics and Computation, 221, 403–410. https://doi.org/10.1016/j.amc.2013.05.075

Livazović, G., & Bojčić, K. (2019). Problem gambling in adolescents: what are the psychological, social and financial consequences? BMC Psychiatry, 19(1), 308. https://doi.org/10.1186/s12888-019-2293-2

Makarin, A. A., & Astuti, L. (2023). Faktor yang Mempengaruhi Mahasiswa Melakukan Perjudian Online. Indonesian Journal of Criminal Law and Criminology (IJCLC), 3(3), 180–189. https://doi.org/10.18196/ijclc.v3i3.17674

Metcalf, C. J. E., Morris, D. H., & Park, S. W. (2020). Mathematical models to guide pandemic response. Science, 369(6502), 368–369. https://doi.org/10.1126/science.abd1668

Mohamadou, Y., Halidou, A., & Kapen, P. T. (2020). A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19. Applied Intelligence, 50(11), 3913–3925. https://doi.org/10.1007/s10489-020-01770-9

Padmanabhan, R., Abed, H. S., Meskin, N., Khattab, T., Shraim, M., & Al-Hitmi, M. A. (2021). A review of mathematical model-based scenario analysis and interventions for COVID-19. Computer Methods and Programs in Biomedicine, 209, 106301. https://doi.org/10.1016/j.cmpb.2021.106301

Parrado-González, A., Fernández-Calderón, F., Newall, P. W. S., & León-Jariego, J. C. (2023). Peer and Parental Social Norms as Determinants of Gambling Initiation: A Prospective Study. Journal of Adolescent Health, 73(2), 296–301. https://doi.org/10.1016/j.jadohealth.2023.02.033

Rogier, G., Beomonte Zobel, S., Morganti, W., Ponzoni, S., & Velotti, P. (2021). Metacognition in gambling disorder: A systematic review and meta-analysis. Addictive Behaviors, 112, 106600. https://doi.org/10.1016/j.addbeh.2020.106600

Seo, W., Kim, N., Lee, S.-K., & Park, S.-M. (2020). Machine learning-based analysis of adolescent gambling factors. Journal of Behavioral Addictions, 9(3), 734–743. https://doi.org/10.1556/2006.2020.00063

Siste, K., Hanafi, E., Sen, L. T., Damayanti, R., Beatrice, E., & Ismail, R. I. (2022). Psychometric properties of the Indonesian Ten-item Internet Gaming Disorder Test and a latent class analysis of gamer population among youths. PLOS ONE, 17(6), e0269528. https://doi.org/10.1371/journal.pone.0269528

Syvertsen, A., Erevik, E. K., Hanss, D., Mentzoni, R. A., & Pallesen, S. (2022). Relationships Between Exposure to Different Gambling Advertising Types, Advertising Impact and Problem Gambling. Journal of Gambling Studies, 38(2), 465–482. https://doi.org/10.1007/s10899-021-10038-x

Tolchard, B. (2015). The impact of gambling on rural communities worldwide: A narrative literature review. Journal of Rural Mental Health, 39(2), 90–107. https://doi.org/10.1037/rmh0000030




DOI: https://doi.org/10.30743/mes.v9i1.8066

Refbacks

  • There are currently no refbacks.