Rancang Bangun Sistem Magnetik Bearing Levitasi Untuk Peningkatan Efisiensi Motor Dc Dengan Menggunakan Metode Halbach Array

Raja Harahap, M. Zaki Iskandar Tarigan

Abstract


Bearing adalah elemen mesin yang berfungsi untuk menahan beban pada saat dua elemen mesin saling bergerak secara relatif. Setiap benda yang bergerak secara relatif pasti akan menimbulkan gesekan. Setiap gesekan yang terjadi pasti akan menimbulkan keausan yang akan mempengaruhi umur pemakaian dari elemen tersebut. Pada bearing konvensional bantalan bola digunakan untuk mengurangi kerugian gesekan sehingga dapat mengurangi rugi-rugi mekanik dan dapat memaksimalkan output bersih putaran pada motor DC. Teknologi magnetik bearing levitasi akan menghasilkan gaya angkat yang melayang pada rotor dengan memanfaatkan tolak-menolak kutub magnet. Koefisien gesek yang sangat rendah, selain itu bantalan magnet tidak memerlukan daya tambahan untuk sistem pengontrol dan tidak memerlukan suplai cairan pelumas atau pembuangan. Untuk mengantisipasi ketidakstabilan aksial, maka digunakan metode Halbach array, metode ini dapat menghasilkan peningkatan medan magnet di satu sisi array dengan membatalkan medan magnet di sisi lain hingga mendekati nol, metode ini akan menghasilkan pola magnetisasi yang berputar secara spasial. Pada penelitian ini, akan dilakukan rancang bangun magnetik bearing levitasi dengan menggunakan magnet permanen Neodymium N52 dengan metode Halbach array dalam konfigurasi magnet permanen. Berdasarkan hasil analisa pada penelitian ini penggunaan magnetik bearing levitasi dengan metode Halbach array dapat mengurangi rugi-rugi mekanik sehingga meningkatkan efisiensi motor DC sebesar 4,23% dan dapat menurunkan suhu motor DC saat beroperasi yaitu sebesar 1,78%.

Keywords


Halbach Array; Bearing Magnetik; Efisiensi dan Rugi-rugi

Full Text:

PDF

References


N. R. Hemenway, H. Gjemdal, and E. L. Severson, 2019, Magnetic Bearing Technology for Industrial Bearingless Motor Systems,” Proc. of the 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Vol.1, pp. 51-58.

E. Ramirez-Laboreo, M. G. Roes, and C. Sagues, 2019, Hybrid Dynamical Model for Reluctance Actuators Including Saturation, Hysteresis, and Eddy Currents,” IEEE/ASME Trans. on Mechatronics, Vol.24, No.3, pp. 1396-1406.

E. Csencsics, J. Schlarp, T. Schopf, and G. Schitter, 2019, Compact High Performance Hybrid Reluctance Actuated Fast Steering Mirror System,” Mechatronics, Vol.62, 102251.

X. Lu, 2021, Displacement Devices, Moveable Stages for Displacement Devices and Methods for Fabrication, Use and Control of Same,” US Patent 10,958,148, March 23.

A. Goos and R. Gloess, 2020, Sensor Array and Algorithms for Current Control in a 6-DOF Magnetic Levitation Actuator,” Proc. of the 16th Int. Conf. on New Actuators (ACTUATOR 2018), pp. 1-4, 2018.

A. Goos, R. Ehrle, D. Geissler, and R. Gloess, 2020, Magnetic Levitated Linear Scan Module with Nanometer Resolution,” Proc. 35th Annual Meeting of the American Society for Precision Engineering, pp. 58-62..

J. Y. Yoon, L. Zhou, and D. L. Trumper, 2019, Linear Stages for Next Generation Precision Motion Systems,” Proc. of the 2019 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM), pp. 241- 247.

L. Zhou and D. L. Trumper, 2020, Magnetically Levitated Linear Stage with Linear Bearingless Slice Hysteresis Motors,” IEEE/ASME Trans. on Mechatronics, Vol.26, No.2, pp. 1084-1094.

H. Zhu, T. J. Teo, and C. K. Pang, 2019, Magnetically Levitated Parallel Actuated Dual-Stage (Maglev-PAD) System for Six-axis Precision Positioning,” IEEE/ASME Trans. on Mechatronics, Vol.24, No.4, pp. 1829-1838.

M. Takahashi, H. Ogawa, and T. Kato, 2020, Compact Maglev Stage System for Nanometer-scale Positioning,” Precision Engineering, Vol.66, pp. 519-530, 2020.

A. Delissen, D. Laro, H. Kleijnen, F. v. Keulen, and M. Langelaar, 2020, High-precision Motion System Design by Topology Optimization Considering Additive Manufacturing,” Proc. of the 20th Int. Conf. of the European Society for Precision Engineering and Nanotechnology (euspen 2020), pp. 257-258.

I. Heyman and L. Zhou, 2021, Magnetically Levitated XYZ Nanopositioning Sample Stage for X-ray Microscopes,” Proc. of the 36th Annual Meeting of the American Society for Precision Engineering.

A. Anthis, D. Trumper, and T. Hamer, 2021, Design and Verification of a Planar, Flux-Steering Magnetic Actuator, Proc. of the 36th ASPE Annual Meeting.

R. Gloess and A. Goos, 2020, Magnetic Levitation Stages for Planar and Linear Scan Application with Nanometer Resolution,” Int. J. of Applied Electromagnetics and Mechanics, Vol.63, No.1, pp. 105-117, 2020.

X. Li, H. Zhu, J. Ma, T. J. Teo, C. S. Teo, M. Tomizuka, and T. H. Lee, 2020, Data-driven Multiobjective Controller Optimization for a Magnetically Levitated Nanopositioning System, IEEE/ASME Trans. on Mechatronics, Vol.25, No.4, pp. 1961-1970.

R. Baade, 2020, Linear, Low-mass, Low-cost: Wafer-handler Systems Engineering and Magnetic Bearing Design,” Mikroniek.

J. Y. Yoon, J. H. Lang, and D. L. Trumper, 2019, Double-sided Linear Iron-core Fine-tooth Motor for Low Acoustic Noise and High Acceleration, IEEE/ASME Trans. on Mechatronics, Vol.24, No.5, pp. 2161-2170.

H. B. Koolmees and J. P. M. B. Vermeulen, 2021, Assembly Comprising a Cryostat and Layer of Superconducting Coils and Motor System Provided with such an Assembly,” US Patent 15/734,882, July 22.

J. Wang, M. Zhang, Y. Zhu, K. Yang, X. Li, L. Wang, J. Hu, and C. Hu, 2019, Integrated Optimization of 3D Structural Topology and Actuator Configuration for Vibration Control in Ultra-precision Motion Systems,” Structural and Multidisciplinary Optimization, Vol.60, No.3, pp. 909-925.

J. Wu and L. Zhou, 2022, Control Co-design of Actively Controlled Lightweight Structures for High-acceleration Precision Motion Systems,” Proc. of the 2022 American Control Conf. (ACC).




DOI: https://doi.org/10.30743/jet.v9i1.9756

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Raja Harahap, M. Zaki Iskandar Tarigan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JET (Journal of Electrical Technology)

Fakultas Teknik - Universitas Islam Sumatera Utara
Jl. Sisingamangaraja, Teladan, Medan 20217

Website: https://jurnal.uisu.ac.id/index.php/jet
Email: jet_electro@uisu.ac.id

JET (Journal of Electrical Technology) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License