Nurul Qorima Putri, Paian Sianturi


This research is focused on discussing the SEIQRS epidemic model for the spread of the COVID-19 disease with a nonlinear incidence rate. From the result of analysis of the SEIQR model obtained two equilibrium point these are diseases free equilibrium points and endemic equilibrium point. Then, the analysis of the completion behavior is done by using eigenvalues and stability around equilibrium point, the obtained result of the diseases free equilibrium point has two stability traits are saddle point, and stable. The stability diseases free equilibrium will be stable when  R0 < 1, if R0> 1 then the equilibrium point is not stable (saddle point) and conversely the positive endemic equilibrium point will be spiral stable. In numerical analysis, it is done by varying the parameter values and using the fourth order runge-kutta approach.

Full Text:



Anton, H. (1995). Aljabar Linear Elementer. (P. Silaban, & I. N. Susila, Trans.) Jakarta: Erlangga.

Finizio, N., & Ladas, G. (1982). Penerapan Diferensial Biasa dengan Penerapan Modern. (D. W. Santoso, Trans.) Jakarta: Erlangga.

Gennaro, F. D., Pizzol, D., Marotta, C., Antunes, M., Racalbuto, V., Veronese, N., & Smith, L. (2020). Coronavirus Diseases (COVID-19) Current Status and Future Perspective: A Narrative Review. International Journal of Environment Research and Public Health.

Giesecke, J. (2017). Modern Infectious Disease Epidemiology (3rd ed.). U.S: CRC Press.

Haukkanen, P., Merikoski, J. K., Mattila, M., & Tossavainen, T. (2017). The Arithmetic Jacobian Matrix and Determinant. Journal of Integer Sequences, 20.

Janakat, S., Momani, W. A., Abu-Ismail, L., Awwad, M. A., Ameri, O. A., Gharaibeh, S., & Barakat, H. (2020). A Study on Knowledge, Behavior, and Attitude Toward Novel Coronavirus 2019 (SARS-CoV-2) Among the Jordanian Population. Asia Pacific Journal of Public Health, 1-3.

Jordan, D. W., & Smith, P. (2007). Nonlinear Ordinary Differential Equation (4 ed.). New York: Oxford University Press Inc.

Odagaki, T. (2020). Exact properties of SIQR model for COVID-19. ELSEVIER: Physica A.

Panfilov, A. (2004). Qualitative Analysis of Differential Equation. Urrecht: Urrecht University.

Rafiq, M., Macias-Diaz, J. E., Raza, A., & Ahmed, N. (2020). Design of a nonlinear model for the propagation of COVID-19 and its efficient nonstandard computational implementation. Applied Mathematical Modelling, 1835-1846.

Rohith, G., & Devika, K. B. (2020). Dynamics and control of COVID-19 pandemic with nonlinear incidence rates. 2013-2026.

Ruan, S., & Wang, W. (2003). Dynamical behavior of an epidemic model with a nonlinear incidence rate. Journal Of Differential Equations, 135-163.

WHO. (2020). Novel Coronavirus 2019. Retrieved November 19, 2020, from

Wu, Y.-C., Chen, C.-S., & Chan, Y.-J. (2020). The outbreak of COVID-19: An overview. Journal of the Chinese Medical Association, 83(3).

Zeb, A., AlZahrani, E., Erturk, V. S., & Zaman, G. (2020). Mathematical Model for Coronavirus Diseases 2019 (COVID-19) Containing Isolation Class. 2020.

Zulaikha, Trisilowati, & Fadhilah, I. (2017). Kontrol Optimal pada Model Epidemi SEIQR dengan Tingkat Kejadian Standar. Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami), 41-51.



  • There are currently no refbacks.