FUTURE OF ASPHALT DEVELOPMENT: A REVIEW OF SUSTAINABLE ADDITIVES AND ADVANCED TECHNOLOGIES FOR ENHANCED ASPHALT PERFORMANCE
Abstract
Keywords
Full Text:
PDFReferences
Abd Ali, N. S., Joni, H. H., & Al-Rubaee, R. H. A. (2024). Evaluation of reclaimed asphalt mixtures rejuvenated with waste engine oil to resist rutting deformation. Open Engineering, 14(1). https://doi.org/10.1515/eng-2022-0555
Abd El-Rahman, A. M. M., El-Shafie, M., Mohammedy, M. M., & Abo-Shanab, Z. L. (2018). Enhancing the performance of blown asphalt binder using waste EVA copolymer (WEVA). Egyptian Journal of Petroleum, 27(4), 513–521. https://doi.org/10.1016/j.ejpe.2017.08.002
Abdalhameed, A. M., & Abd, D. M. (2021). Rutting performance of asphalt layers mixtures with inclusion RAP materials. Anbar Journal of Engineering Science, 12(2), 203–210. https://doi.org/10.37649/aengs.2021.171188
Abdelmagid, A. A. A., & Qiu, Y. (2024). Repurposing agricultural waste: The effectiveness of peanut husk ash in improving asphalt mixture properties. Construction and Building Materials, 411, 134476. https://doi.org/10.1016/j.conbuildmat.2023.134476
Abdukadir, A., Pei, Z., Zhou, W., & Yi, J. (2024). Optimization of composite-modified asphalt ratio and performance evaluation of rich bottom layer mixes. Construction and Building Materials, 411, 134792. https://doi.org/10.1016/j.conbuildmat.2023.134792
Abdul-Mawjoud, A. A., & Thanoon, L. S. (2015). Evaluation of SBR and PS-modified asphalt binders and HMA mixtures containing such binders. Applied Research Journal, 1(9), 460–469.
Adnan, A. M., Luo, X., Lü, C., Wang, J., & Huang, Z. (2020). Improving mechanics behavior of hot mix asphalt using graphene-oxide. Construction and Building Materials, 254, 119261. https://doi.org/10.1016/j.conbuildmat.2020.119261
Adnan, A. M., & Wang, J. (2023). Enhancement of rheological performance and compatibility of tire rubber-modified asphalt binder with the addition of graphene. Construction and Building Materials, 402, 133038. https://doi.org/10.1016/j.conbuildmat.2023.133038
Ahmed, M. B., Abed, A. H., & Al-Badran, Y. M. H. (2020). Enhancement of porous asphalt mixture for resisting environmental conditions using modified asphalt. IOP Conference Series: Materials Science and Engineering, 737(1), 12118. https://doi.org/10.1088/1757-899X/737/1/012118
Al-Hadidy, A. I. (2024). Experimental Investigation on Performance of Asphalt Mixtures with Waste Materials. International Journal of Pavement Research and Technology, 17(4), 1079–1091. https://doi.org/10.1007/s42947-023-00288-w
Al-Massaid, H., Khedaywi, T., & Smadi, M. (1989). Properties of asphalt-oil shale ash bituminous mixtures under normal and freeze-thaw conditions. Transportation Research Record, 1228, 54–62.
Al-Mufti, R. L., & Fried, A. N. (2017). Improving the strength properties of recycled asphalt aggregate concrete. Construction and Building Materials, 149, 45–52. https://doi.org/10.1016/j.conbuildmat.2017.05.056
Al-Ohaly, A. A., & Terrel, R. L. (1988). Effect of microwave heating on adhesion and moisture damage of asphalt mixtures. In Transportation Research Record (Issue 1171, pp. 27–36).
Albayati, A. H., & Abdulsattar, H. (2020). Performance evaluation of asphalt concrete mixes under varying replacement percentages of natural sand. Results in Engineering, 7, 100131. https://doi.org/10.1016/j.rineng.2020.100131
Aliaa, A. F., & Salman, B. F. (2021). Improving the Properties of Asphalt Concrete Mixtures Using Iron Filling Wastes. IOP Conference Series: Earth and Environmental Science, 856(1), 0–11. https://doi.org/10.1088/1755-1315/856/1/012009
Almudaiheem, J. A. (1990). Evaluation of Dune Sand and Asphalt Mixes Containing Different Amounts of Crusher Waste Dust. Transportation Research Record, 1269, 176–184.
Alyousify, S., & Taher, S. (2021). An Evaluation of The Effect of Aggregate Type on Hot Mix Asphalt Properties in Kurdistan Region of Iraq. The Journal of The University of Duhok, 24(2), 124–135. https://doi.org/10.26682/sjuod.2021.24.2.13
Amrani, M., El Haloui, Y., Hajikarimi, P., Sehaqui, H., Hakkou, R., Barbachi, M., & Taha, Y. (2020). Feasibility of using phosphate wastes for enhancing high-temperature rheological characteristics of asphalt binder. Journal of Material Cycles and Waste Management, 22(5), 1407–1417. https://doi.org/10.1007/s10163-020-01026-1
Anderson, D. A., & Goetz, W. H. (1973). Mechanical behavior and reinforcement of mineral filler-asphalt mixtures.
Araz, N. G., Aksoy, A., Aslan, M. T., & İskender, E. (2023). Asfalt Kaplamalarda Bitüm Oranına Bağlı Olarak Sıkıştırma Sıcaklığının Etkisinin Marshall Deneyi Parametreleri ile İncelenmesi. Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 4(1), 39–50. https://doi.org/10.53501/rteufemud.1292656
Bai, B. C., Park, D. W., Vo, H. V., Dessouky, S., & Im, J. S. (2015). Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers. Journal of Nanomaterials, 2015. https://doi.org/10.1155/2015/926809
Boranbayeva, L., Boiko, G., Sharifullin, A., Lubchenko, N., Sarmurzina, R., Kozhamzharova, A., & Mombekov, S. (2024). Analysis of the Processes of Paraffin Deposition of Oil from the Kumkol Group of Fields in Kazakhstan. Processes, 12(6). https://doi.org/10.3390/pr12061052
Cheetham, A., Haas, R., Kennepohl, G., & Bean, D. (1980). Improved Characterization of Sulfur Asphalt Materials for Structural Analysis. In J. A. Scherocman (Ed.), Asphalt Pavement Construction: New Materials and Techniques (Vols STP724-EB, p. 0). ASTM International. https://doi.org/10.1520/STP38365S
Cong, P., Zhang, Y., & Liu, N. (2022). Investigation of the properties of asphalt mixtures incorporating reclaimed SBS modified asphalt pavement. Construction and Building Materials, 338, 127652. https://doi.org/10.1016/j.conbuildmat.2016.03.059
Deng, Y., Hu, M., Xu, L., Ling, S., Ni, H., & Sun, D. (2022). Dual roles played by manganese dioxide filler in asphalt pavement material: Chemical modification and healing improvement. Construction and Building Materials, 345, 128371. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.128371
Du, P., Long, J., Duan, H., Luo, H., & Zhang, H. (2022). Laboratory performance and aging resistance evaluation of zinc oxide/expanded vermiculite composite modified asphalt binder and mixture. Construction and Building Materials, 358, 129385. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.129385
Esch, D. C. (1982). Construction and benefits of rubber-modified asphalt pavements. Transportation Research Record, 860, 5–13.
Farraj Muslim, R., Omer Rashid, K., Yousif Ahmed, T., & Hammad Ahmed, A. (2024). Improving the organic chemical and physical rheological specification of natural asphalt using wastes of poly vinyl chloride, glass and tires. 1–32. https://doi.org/10.21203/rs.3.rs-4338813/v1
Fernandes, S., Peralta, J., Oliveira, J. R. M., Williams, R. C., & Silva, H. M. R. D. (2017). Improving asphalt mixture performance by partially replacing bitumen with waste motor oil and elastomer modifiers. Applied Sciences (Switzerland), 7(8). https://doi.org/10.3390/app7080794
Forbes, R. J. (2024). Bitumen and petroleum in antiquity (Vol. 1). Brill.
Ganjei, M. A., & Aflaki, E. (2019). Application of nano-silica and styrene-butadiene-styrene to improve asphalt mixture self healing. International Journal of Pavement Engineering, 20(1), 89–99. https://doi.org/10.1080/10298436.2016.1260130
Giavarini, C., & Rinaldi, G. (1989). Development of new adhesion agents for asphalt cement. Industrial & Engineering Chemistry Research, 28(8), 1231–1236.
Guo, F., Li, R., Lu, S., Bi, Y., & He, H. (2020). Evaluation of the effect of fiber type, length, and content on asphalt properties and asphalt mixture performance. Materials, 13(7), 1556. https://doi.org/10.3390/MA13071556
Guo, Y., Wang, X., Ji, G., Zhang, Y., Su, H., & Luo, Y. (2021). Effect of recycled shell waste as a modifier on the high-and low-temperature rheological properties of asphalt. Sustainability (Switzerland), 13(18). https://doi.org/10.3390/su131810271
Gupta, J. P., & Aggarwal, R. K. (1980). Use of an asphalt subsurface barrier for improving the productivity of desert sandy soils. Journal of Arid Environments, 3(3), 215–222. https://doi.org/10.1016/S0140-1963(18)31649-5
Hainin, M. R., Aziz, M. M. A., Adnan, A. M., Hassan, N. A., Jaya, R. P., & Liu, H. Y. (2015). Performance of modified asphalt binder with tire rubber powder. Jurnal Teknologi (Sciences & Engineering), 73(4). https://doi.org/10.11113/jt.v73.4288
Hameed, A., Al-Busaltan, S., Dulaimi, A., Kadhim, M. A., & Al-Yasari, R. (2021). Evaluating Modified Asphalt Binder Comprising Waste Paper Fiber and Recycled Low-Density Polyethylene. Journal of Physics: Conference Series, 1973(1), 12237. https://doi.org/10.1088/1742-6596/1973/1/012237
Hoover, J. M. (1973). Surface improvement and dust palliation of unpaved secondary roads and streets.
Huang, J., Kumar, G. S., & Sun, Y. (2021). Evaluation of workability and mechanical properties of asphalt binder and mixture modified with waste toner. Construction and Building Materials, 276, 122230. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.122230
Huff, B. J., & Vallerga, B. A. (1979). Characteristics and performance of asphalt-rubber material containing a blend of reclaim and crumb rubber. Transportation Research Record, 821, 29–36.
Hussain, W. A. M., Abdulrasool, A. T., & Kadhim, Y. N. (2022). Using Nanoclay Hydrophilic Bentonite As a Filler To Enhance the Mechanical Properties of Asphalt. Journal of Applied Engineering Science, 20(1), 300–304. https://doi.org/10.5937/jaes0-35111
Ismael, M. Q., Fattah, M. Y., & Jasim, A. F. (2021). Improving the rutting resistance of asphalt pavement modified with the carbon nanotubes additive. Ain Shams Engineering Journal, 12(4), 3619–3627. https://doi.org/https://doi.org/10.1016/j.asej.2021.02.038
Jew, P., Shimizu, J. A., Svazic, M., & Woodhams, R. T. (1986). Polyethlene‐modified bitumen for paving applications. Journal of Applied Polymer Science, 31(8), 2685–2704.
Joni, H. H., & Zghair, H. H. (2020). Properties of modified asphalt mixtures with additives of fillers materials. IOP Conference Series: Materials Science and Engineering, 737(1), 12120. https://doi.org/10.1088/1757-899X/737/1/012120
Khaled, T. T., Kareem, A. I., Mohamad, S. A., Al-Hamd, R. K. S., & Minto, A. (2024). The Performance of Modified Asphalt Mixtures with Different Lengths of Glass Fiber. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-024-00443-x
Khedaywi, T., Haddad, M., & Khaldi, N. A.-H. (2024). Study on the feasibility of using waste glass in binder and asphalt mixture. Innovative Infrastructure Solutions, 9(6), 227. https://doi.org/10.1007/s41062-024-01537-y
Kietzman, J. H., & Rodier, C. E. (1984). Effect of diatomite filler on performance of asphalt pavements. Transp. Res. Rec, 968, 8–19.
Kim, K. N., & Le, T. H. M. (2023). Durability of Polymer-Modified Asphalt Mixture with Wasted Tire Powder and Epoxy Resin under Tropical Climate Curing Conditions. Polymers, 15(11). https://doi.org/10.3390/polym15112504
Kim, M.-J., Kim, S., Yoo, D.-Y., & Shin, H.-O. (2018). Enhancing mechanical properties of asphalt concrete using synthetic fibers. Construction and Building Materials, 178, 233–243. https://doi.org/10.1016/j.conbuildmat.2018.05.070
Lan, T., Wang, B., Zhang, J., Wei, H., & Liu, X. (2023). Utilization of waste wind turbine blades in performance improvement of asphalt mixture. Frontiers in Materials, 10, 1164693. https://doi.org/10.3389/fmats.2023.1164693
Li, H., Jiang, H., Zhang, W., Liu, P., Wang, S., Wang, F., Zhang, J., & Yao, Z. (2018). Laboratory and field investigation of the feasibility of crumb rubber waste application to improve the flexibility of anti-rutting performance of asphalt pavement. Materials, 11(9), 1738. https://doi.org/10.3390/ma11091738
Li, P., Peng, W., Tian, S., Liu, Z., Liu, J., & Liu, S. (2023). Comprehensive Laboratory Evaluation of Crack Resistance for an Asphalt Rubber Stress-Absorbing Membrane Interlayer (AR-SAMI). Sustainability, 15(11), 8982. https://doi.org/10.3390/su15118982
Li, Q., Qiu, Y., Rahman, A., & Ding, H. (2018). Application of steel slag powder to enhance the low-temperature fracture properties of asphalt mastic and its corresponding mechanism. Journal of Cleaner Production, 184, 21–31. https://doi.org/10.1016/J.JCLEPRO.2018.02.245
Li, Z., Li, K., Chen, W., Liu, W., Yin, Y., & Cong, P. (2022). Investigation on the characteristics and effect of plant fibers on the properties of asphalt binders. Construction and Building Materials, 338, 127652. https://doi.org/10.1016/j.conbuildmat.2022.127652
Liang, P., Liang, M., Fan, W., Zhang, Y., Qian, C., & Ren, S. (2017). Improving thermo-rheological behavior and compatibility of SBR modified asphalt by addition of polyphosphoric acid (PPA). Construction and Building Materials, 139, 183–192. https://doi.org/10.1016/J.CONBUILDMAT.2017.02.065
Liu, S., Jin, J., Yu, H., Gao, Y., Du, Y., Sun, X., & Qian, G. (2023). Performance enhancement of modified asphalt via coal gangue with microstructure control. Construction and Building Materials, 367, 130287.
Liu, Y., Yang, Z., Luo, H., & Xi, L. (2023). Preparation, characterization, and properties of asphalt modified by surface-treated anhydrous calcium sulfate whiskers. Construction and Building Materials, 384, 131370. https://doi.org/10.1016/J.CONBUILDMAT.2023.131370
Lv, S., Xia, C., Yang, Q., Guo, S., You, L., Guo, Y., & Zheng, J. (2020). Improvements on high-temperature stability, rheology, and stiffness of asphalt binder modified with waste crayfish shell powder. Journal of Cleaner Production, 264, 121745. https://doi.org/10.1016/j.jclepro.2020.121745
Ma, F., Dai, J., Fu, Z., Li, C., Wen, Y., Jia, M., Wang, Y., & Shi, K. (2022). Biochar for asphalt modification: A case of high-temperature properties improvement. Science of the Total Environment, 804, 150194. https://doi.org/10.1016/j.scitotenv.2021.150194
Mahmood, H. T., Al-Hadidy, A. I., & Zejiao, D. (2024). Evaluating the mechanical performance of hot and warm asphalt mixtures utilizing sulfur waste as an alternative filler. Al-Rafidain Engineering Journal (AREJ), 29(1), 1–11. https://doi.org/10.33899/rengj.2023.143569.1289
Majidzadeh, K. (1976). Application of fracture mechanics for improved design of bituminous concrete.
Mamlouk, M. S., & Wood, L. E. (1983). Use and Properties of Emulsified Asphalt Mixtures in Low-Volume Roads. Transportation Research Record, 898, 277–283.
Martinho, F. C. G., Picado-Santos, L. G., Lemos, F. M. S., Lemos, M. A. N. D. A., & Santos, E. R. F. (2022). Using plastic waste in a circular economy approach to improve the properties of bituminous binders. Applied Sciences, 12(5), 2526. https://doi.org/10.3390/APP12052526
McQuillen Jr, J. L., Takallou, H. B., Hicks, R. G., & Esch, D. (1988). Economic analysis of rubber-modified asphalt mixes. Journal of Transportation Engineering, 114(3), 259–277. https://doi.org/10.1061/(ASCE)0733-947X(1988)114:3(259)
Mohammed, A. M., & Abed, A. (2023). Improving local asphalt pavement with nano-CaCO3. E3S Web of Conferences, 427, 3020. https://doi.org/10.1051/E3SCONF/202342703020
Mohammed, E. A. A.-H., Mohamad, S. A., Khaled, T. T., & Alzubaidi, A. (2020). Study the Effect of Mineral Filler on the Mechanical Properties of Hot Mix Asphalt. IOP Conference Series: Materials Science and Engineering, 870(1), 12086. https://doi.org/10.1088/1757-899X/870/1/012086
Mohammed, K. A., Mansi, A. I., & Salih, S. M. (2021). Influence of Waste Cork with Thinner on the Rheological Properties of Asphalt. International Journal of Design and Nature and Ecodynamics, 16, 701–707. https://doi.org/10.18280/ijdne.160612
Mousavi, S. M., Farsi, M., & Azizi, M. (2015). Enhancement of rheological and mechanical properties of bitumen using styrene acrylonitrile copolymer. Journal of Applied Polymer Science, 132(17). https://doi.org/10.1002/APP.41875
Mousavinezhad, S. H., Shafabakhsh, G. H., & Ani, O. J. (2019). Nano-clay and styrene-butadiene-styrene modified bitumen for improvement of rutting performance in asphalt mixtures containing steel slag aggregates. Construction and Building Materials, 226, 793–801. https://doi.org/10.1016/J.CONBUILDMAT.2019.07.252
Nadkarni, V. M., Shenoy, A. V, & Mathew, J. (1985). Thermomechanical behavior of modified asphalts. Industrial & Engineering Chemistry Product Research and Development, 24(3), 478–484. https://doi.org/10.1515/arh-2000-0012
Niu, D., Zhang, Z., Gao, Y., Li, Y., Yang, Z., & Niu, Y. (2023). Effect of pretreated cow dung fiber on rheological and fatigue properties of asphalt binder. Cellulose, 30(6), 3773–3791. https://doi.org/10.1007/S10570-023-05113-Y/FIGURES/15
Oliveira, J. R. M., Silva, H. M. R. D., Abreu, L. P. F., & Fernandes, S. R. M. (2013). Use of a warm mix asphalt additive to reduce the production temperatures and to improve the performance of asphalt rubber mixtures. Journal of Cleaner Production, 41, 15–22. https://doi.org/10.1016/J.JCLEPRO.2012.09.047
Oruç, Ş., & Yılmaz, B. (2016). Improvement in performance properties of asphalt using a novel boron-containing additive. Construction and Building Materials, 123, 207–213. https://doi.org/10.1016/J.CONBUILDMAT.2016.07.003
Paczuski, M. (2024). Modification of Asphaltene Dispersions in Crude Oil. In Physicochemistry of Petroleum Dispersions in Refining Technology. IntechOpen.
Pasandín, A. R., Pérez, I., Oliveira, J. R. M., Silva, H. M. R. D., & Pereira, P. A. A. (2015). Influence of ageing on the properties of bitumen from asphalt mixtures with recycled concrete aggregates. Journal of Cleaner Production, 101, 165–173. https://doi.org/10.1016/J.JCLEPRO.2015.03.069
Pei, X., Fan, W., Liu, Y., Qian, C., Wang, Y., Jiang, Y., Chen, S., Wang, Z., & Han, L. (2020). The effect of oil sands de-oiled asphalt on rheological properties, compatibility and stability of asphalt binder. Construction and Building Materials, 263, 120594. https://doi.org/10.1016/j.conbuildmat.2022.130287
Preciado, J., Martínez Arguelles, G., Dugarte, M., Bonicelli, A., Cantero, J., Vega, D., & Barros, Y. (2017). Improving Mechanical Properties of Hot Mix Asphalt Using Fibres and Polymers in Developing Countries. IOP Conference Series: Materials Science and Engineering, 245(2). https://doi.org/10.1088/1757-899X/245/2/022013
Primerano, K., Mirwald, J., & Hofko, B. (2024). Asphaltenes and maltenes in crude oil and bitumen: A comprehensive review of properties, separation methods, and insights into structure, reactivity and aging. Fuel, 368, 131616. https://doi.org/https://doi.org/10.1016/j.fuel.2024.131616
Ragab, A. A., Farag, R. K., Kandil, U. F., El-Shafie, M., Saleh, A. M. M., & El-Kafrawy, A. F. (2016). Thermo-mechanical properties improvement of asphalt binder by using methylmethacrylate/ethylene glycol dimethacrylate. Egyptian Journal of Petroleum, 25(3), 397–407. https://doi.org/10.1016/J.EJPE.2015.09.001
Rajan, B., Suchismita, A., & Singh, D. (2023). Rutting resistance evaluation of highly polymer-modified asphalt binder and mixes using different performance parameters. Journal of Materials in Civil Engineering, 35(8), 4023266. https://doi.org/10.1061/JMCEE7.MTENG-15194
Ramadan, K. Z., Al-Khateeb, G. G., & Taamneh, M. M. (2020). Mechanical properties of styrofoam-modified asphalt binders. International Journal of Pavement Research and Technology, 13(2), 205–211. https://doi.org/10.1007/s42947-019-0102-4
Ruckel, P. J., Acott, S. M., & Bowering, R. H. (1983). Foamed-asphalt paving mixtures: preparation of design mixes and treatment of test specimens. Transportation Research Record, 911, 88–95.
Sainton, A. (1990). Advantages of asphalt rubber binder for porous asphalt concrete. Transportation Research Record, 1265, 69–81.
Salman, M. M., & Abd Alwahab, O. A. (2021). Using phase change material to improve asphalt pavement behavior. IOP Conference Series: Materials Science and Engineering, 1076(1), 12104. https://doi.org/10.1088/1757-899X/1076/1/012104
Sarsam, S. I. (2022). Assessing the Tensile Properties of Asphalt Concrete. Journal of Brilliant Engineering, 4, 4707.
Satayeva, S. S., Burakhta, V. A., Urazova, A. F., Nazarova, D. S., Khamzina, B. E., Begaliyeva, R. S., Shinguzhieva, A. B., Satybayeva, N. A., Yerzhanova, Z. T., & Murzagaliyeva, A. A. (2024). Asphalt Concrete Production Technology Using Oil Sludge from Zhaik Munay LLP. Journal of Engineering and Technological Sciences, 56(1), 71–80. https://doi.org/10.5614/j.eng.technol.sci.2024.56.1.6
Saylak, D., Gallaway, B. M., & Ahmad, H. (1975). Beneficial Use of Sulfur in Sulfur-Asphalt Pavements. In New Uses of Sulfur (Vol. 140, pp. 102-129 SE – 7). AMERICAN CHEMICAL SOCIETY. https://doi.org/doi:10.1021/ba-1975-0140.ch007
Shafabakhsh, G. H., & Ani, O. J. (2015). Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Construction and Building Materials, 98, 692–702. https://doi.org/10.1016/J.CONBUILDMAT.2015.08.083
Shuler, T. S., Collins, J. H., & Kirkpatrick, J. P. (1987). Polymer-modified asphalt properties related to asphalt concrete performance. Asphalt Rheology: Relationship to Mixture, 179–193. https://doi.org/https://doi.org/10.1520/STP18528S
Sienkiewicz, M., Gnatowski, P., Malus, M., Grzegórska, A., Ipakchi, H., Jouyandeh, M., Kucińska-Lipka, J., Navarro, F. J., & Saeb, M. R. (2024). Eco-friendly modification of bitumen: The effects of rubber wastes and castor oil on the microstructure, processability and properties. Journal of Cleaner Production, 447, 141524. https://doi.org/10.1016/J.JCLEPRO.2024.141524
Soleimanbeigi, A., & Edil, T. (2015). Thermal conditioning to improve geotechnical properties of recycled asphalt pavements. Geotechnical Testing Journal, 38(4), 537–548. https://doi.org/10.1520/GTJ20140149
Stroup-Gardiner, M., & Epps, J. A. (1987). Four variables that affect the performance of lime in asphalt aggregate mixtures. Transportation Research Record, 1115, 12–22.
Sun, Z., Yi, J., Huang, Y., Feng, D., & Guo, C. (2016). Properties of asphalt binder modified by bio-oil derived from waste cooking oil. Construction and Building Materials, 102, 496–504. https://doi.org/10.1016/J.CONBUILDMAT.2015.10.173
Torshizi, H. F. (1991). Laboratory and field evaluation of polymer-modified asphalt binders and mixtures. Texas: The University of Texas at Austin.
Vallerga, B. A., & Gridley, P. F. (1980). Carbon black reinforcement of asphalt in paving mixtures. Asphalt Pavement Construction, New Materials and Techniques, ASTM STP, 724, 110–128.
Verga, G., Battiato, G., & La Bella, C. (1975). Asphalt Cement Improvement: The Influence of a Carboxylated SBR Elastomer Investigated by Means of Viscoelastic Parameters. Proc., Association of Asphalt Paving Technologists, 44.
Wan, J., Wu, S., Xiao, Y., Liu, Q., & Schlangen, E. (2016). Characteristics of ceramic fiber modified asphalt mortar. Materials, 9(9), 788. https://doi.org/10.3390/MA9090788
Wang, Y.-Y., Tan, Y.-Q., Lv, H.-J., & Han, M.-Z. (2022). Evaluation of rheological and self-healing properties of asphalt containing microcapsules modified with graphene. Construction and Building Materials, 357, 129287. https://doi.org/10.1016/J.CONBUILDMAT.2022.129287
Weiwei, P., Zhe, L., Weirong, D., & Yaohong, W. (2020). Production method of asphalt with high softening point.
Xiaoming, H., & Eldouma, I. B. (2019). Experimental study to determine the most preferred additive for improving asphalt performance using polypropylene, crumb rubber, and tafpack super in medium and high-temperature range. Applied Sciences, 9(8), 1567.
Xu, C., Zhang, Z., Zhao, F., Liu, F., & Wang, J. (2019). Improving the performance of RET modified asphalt with the addition of polyurethane prepolymer (PUP). Construction and Building Materials, 206, 560–575.
Yan, C., Xi, J., Ai, C., & Leng, Z. (2024). Investigating the unique entropy-elasticity of polymer modified asphalt. Cleaner Materials, 11, 100216.
Ye, Z., Ren, W., Yang, H., Miao, Y., Sun, F., & Wang, L. (2020). An improved asphalt penetration test method. Materials, 14(1), 147.
Yongchun, C., Haitao, W., Yuwei, Z., Liding, L., & Jiaxiang, L. (2023). Effect of Asphalt–Aggregate Adhesion on Mechanical Performance of Stone Matrix Asphalt under Freeze–Thaw Cycles. Journal of Materials in Civil Engineering, 35(6), 4023126. https://doi.org/10.1061/JMCEE7.MTENG-14626
Yu, D., Jia, A., Feng, C., Liu, W., Fu, T., & Qiu, R. (2021). Preparation and mechanical properties of asphalt mixtures reinforced by modified bamboo fibers. Construction and Building Materials, 286, 122984.
Zhang, J., Chen, M., Wu, S., Chen, D., Zhao, Y., & Zhou, X. (2023). Characteristics of waste dry battery powder and its enhancement effect on the physicochemical properties of asphalt binder. Journal of Cleaner Production, 426, 139090.
Zhang, Q., Fang, Z., Xu, Y., & Ma, Z. (2021). Calculation derivation and test verification of indirect tensile strength of asphalt pavement interlayers at low temperatures. Materials, 14(20), 6041.
Zhou, Z., & Chen, G. (2023). Temperature sensitivity analysis of high viscosity–modified asphalt. Journal of Highway and Transportation Research and Development (English Edition), 17(1), 1–8.
DOI: https://doi.org/10.30743/cheds.v9i2.12187
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Hussien muteb Hatam

This work is licensed under a Creative Commons Attribution 4.0 International License.

5.png)

.png)
