REVIEW: MODIFIKASI METAL-ORGANIC FRAMEWORKS SEBAGAI KATALIS EPOKSIDASI OLEFIN

Laela Mukaromah, Neza Rahayu Palapa, Bijak Riyandi Ahadito

Abstract


Pengembangan katalis heterogen telah menjadi aspek penting dalam meningkatkan kinerja katalitik untuk berbagai reaksi kimia. Sebagai material anorganik berpori, kerangka logam-organik (metal-organic frameworks/MOF) muncul sebagai material pendukung untuk mengatasi masalah pemisahan katalis homogen seperti kompleks molibdenum bervalensi tinggi yang telah banyak digunakan untuk epoksidasi olefin. Metode yang digunakan dalam artikel ulasan ini adalah tinjauan pustaka naratif dengan pendekatan yang disederhanakan. Hasil ulasan artikel ini menunjukkan bahwa modifikasi kerangka logam-organik dengan kompleks molibdenum dapat dilakukan melalui sintesis satu tahap (one-pot synthesis) atau metode pasca-sintesis. Kerangka logam-organik berbasis zirkonium dan tembaga terutama dipilih karena sifatnya yang luar biasa sebagai material pendukung padat untuk kompleks molibdenum. Kedua metode modifikasi tersebut menghasilkan katalis dengan selektivitas dan konversi tinggi untuk epoksidasi olefin, seperti cis-siklooktena.

Keywords


Modifikasi; kerangka logam-organik; katalis; epoksidasi; olefin

Full Text:

PDF

References


Abednatanzi, S., Abbasi, A., & Masteri-Farahani, M. (2015). Post-synthetic modification of nanoporous Cu3(BTC)2 metal-organic framework via immobilization of a molybdenum complex for selective epoxidation. Journal of Molecular Catalysis A: Chemical, 399, 10–17. https://doi.org/10.1016/j.molcata.2015.01.014

Afzali, N., Kardanpour, R., Zadehahmadi, F., Tangestaninejad, S., Moghadam, M., Mirkhani, V., Mechler, A., Mohammadpoor-Baltork, I., & Bahadori, M. (2019). Molybdenum(VI)‐functionalized UiO‐66 provides an efficient heterogeneous nanocatalyst in oxidation reactions. Applied Organometallic Chemistry, 33(11), 5225. https://doi.org/10.1002/aoc.5225

Agusta, K. D., Miharja, M. F., Sakti, A. W., Arrozi, U. S. F., Mukaromah, L., Patah, A., Hara, T., & Permana, Y. (2022). Zr-MOFs – catalyzed transfer hydrogenation of furfural to furfuryl alcohol: Unveiled performance of DUT-52. Molecular Catalysis, 524, 112265. https://doi.org/10.1016/j.mcat.2022.112265

Alvaro, E., & Zwicky, D. A. (2021). Improving the quality of literature reviews in chemistry: Tools and techniques. ACS Chemical Health & Safety, 28(5), 303–310. https://doi.org/10.1021/acs.chas.1c00046

Bravo-Sanabria, C. A., Solano-Delgado, L. C., Valdivieso-Zarate, L. M., Ospina-Ospina, R., Martínez-Ortega, F., & Ramírez-Caballero, G. E. (2023). Photo-epoxidation of α-pinene catalyzed by a MoVI oxo-diperoxo complex modified Ti-based metal-organic framework. Molecular Catalysis, 545, 113240. https://doi.org/10.1016/j.mcat.2023.113240

Chen, C., Shen, P., Wan, M., Ding, N., Shi, X., Wang, X., & Zhang, N. (2016). Size-selective epoxidation of olefins in two new metal-organic framework constructed from six-coordinated tetranuclear Cu(II) SBUs. Microporous and Mesoporous Materials, 232, 167–173. https://doi.org/10.1016/j.micromeso.2016.06.013

Chen, Y., Zhang, X., Wang, X., Drout, R. J., Mian, M. R., Cao, R., Ma, K., Xia, Q., Li, Z., & Farha, O. K. (2021). Insights into the structure-activity relationship in aerobic alcohol oxidation over a metal-organic-framework-supported molybdenum(VI) catalyst. Journal of the American Chemical Society, 143(11), 4302–4310. https://doi.org/10.1021/jacs.0c12963

Deng, X., Xu, Y., Liu, J., Lin, D., Zong, Z., Yuan, J., Li, Z., Zhao, G., Zhang, Y., Liu, Y., Chen, X., Feng, X., Chen, D., Yang, C., & Shan, H. (2024). Regulating the coordination mode of Ti atoms in the beta zeolite framework to enhance the 1-hexene epoxidation. Industrial and Engineering Chemistry Research, 63(9), 3817–3826. https://doi.org/10.1021/acs.iecr.3c03543

Gao, T., Sun, W., Wang, H., Zhang, J., Yan, Z., Trentesaux, M., Marinova, M., Wang, C., Ordomsky, V., & Paul, S. (2025). Synthesis of a heterogeneous 2D COF-based Fenton catalyst for epoxidation of olefins. Journal of Catalysis, 449, 116217. https://doi.org/10.1016/j.jcat.2025.116217

Ghasemiyan, M., Abbasi, A., & Hosseini, M. S. (2024). Facile encapsulation of a cobalt complex inside the micropores of ZIF-8 through the bottle around the ship method: A novel heterogeneous catalyst for epoxidation of alkenes. Journal of Molecular Structure, 1311, 138413. https://doi.org/10.1016/j.molstruc.2024.138413

Haryanto, A., Mukaromah, L., Permana, Y., & Patah, A. (2021). Photocatalytic activity of CuBDC and UiO-66 MOFs for methyl orange degradation. Journal of Chemical Technology and Metallurgy, 53, 791–795.

Hester, P., Xu, S., Liang, W., Al-Janabi, N., Vakili, R., Hill, P., Muryn, C. A., Chen, X., Martin, P. A., & Fan, X. (2016). On thermal stability and catalytic reactivity of Zr-based metal-organic framework (UiO-67) encapsulated Pt catalysts. Journal of Catalysis, 340, 85–94. https://doi.org/10.1016/j.jcat.2016.05.003

Judmaier, M. E., Holzer, C., Volpe, M., & Mösch-Zanetti, N. C. (2012). Molybdenum(VI) dioxo complexes employing schiff base ligands with an intramolecular donor for highly selective olefin epoxidation. Inorganic Chemistry, 51(18), 9956–9966. https://doi.org/10.1021/ic301464w

Kim, H. K., Yun, W. S., Kim, M. B., Kim, J. Y., Bae, Y. S., Lee, J. D., & Jeong, N. C. (2015). A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2. Journal of the American Chemical Society, 137(31), 10009–10015. https://doi.org/10.1021/jacs.5b06637

Kravchenko, D. E., Tyablikov, I. A., Kots, P. A., Kolozhvari, B. A., Fedosov, D. A., & Ivanova, I. I. (2018). Olefin epoxidation over metal-organic frameworks modified with transition metals. Petroleum Chemistry, 58(14), 1255–1262. https://doi.org/10.1134/S0965544118140062

Mirzaee, M., Bahramian, B., Gholizadeh, J., Feizi, A., & Gholami, R. (2017). Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes. Chemical Engineering Journal, 308, 160–168. https://doi.org/10.1016/j.cej.2016.09.055

Moghadaskhou, F., Hosseini, A. K., Tadjarodi, A., & Abroudi, M. (2023). Amino-induced cadmium metal–organic framework based on thiazole ligand as a heterogeneous catalyst for the epoxidation of alkenes. Scientific Reports, 13(1), 1–9. https://doi.org/10.1038/s41598-023-42666-1

Mukaromah, L., Permana, Y., & Patah, A. (2022). Influence of room-temperature ionic liquids on the electrosynthesis of CuBDC type metal-organic frameworks: Crystallite size and productivity. Journal of Research and Development on Nanotechnology, 2(1), 1–5. https://doi.org/10.5614/jrdn.2022.2.1.17142

Neves, P., Gomes, A. C., Amarante, T. R., Paz, F. A. A., Pillinger, M., Gonçalves, I. S., & Valente, A. A. (2015). Incorporation of a dioxomolybdenum(VI) complex in a ZrIV-based metal-organic framework and its application in catalytic olefin epoxidation. Microporous and Mesoporous Materials, 202, 106–114. https://doi.org/10.1016/j.micromeso.2014.09.046

Noh, H., Cui, Y., Peters, A. W., Pahls, D. R., Ortuño, M. A., Vermeulen, N. A., Cramer, C. J., Gagliardi, L., Hupp, J. T., & Farha, O. K. (2016). An exceptionally stable metal–organic framework supported molybdenum(VI) oxide catalyst for cyclohexene epoxidation. Journal of the American Chemical Society, 138(44), 14720–14726. https://doi.org/10.1021/jacs.6b08898

Otake, K., Ahn, S., Knapp, J., Hupp, J. T., Notestein, J. M., & Farha, O. K. (2021). Vapor-phase cyclohexene epoxidation by single-ion Fe(III) sites in metal−organic frameworks. Inorganic Chemistry, 60, 2457–2463. https://doi.org/10.1021/acs.inorgchem.0c03364

Rostamnia, S., & Mohsenzad, F. (2018). Nanoarchitecturing of open metal site Cr-MOFs for oxodiperoxo molybdenum complexes [MoO(O2)2@En/MIL-100(Cr)] as promising and bifunctional catalyst for selective thioether oxidation. Molecular Catalysis, 445, 12–20. https://doi.org/10.1016/j.mcat.2017.11.003

Saha, D., Gayen, S., & Koner, S. (2018). Cu(II)/Cu(II)-Mg(II) containing pyridine-2,5-dicarboxylate frameworks: Synthesis, structural diversity, inter-conversion and heterogeneous catalytic epoxidation. Polyhedron, 146, 93–98. https://doi.org/10.1016/j.poly.2018.02.023

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Stubbs, A. W., Braglia, L., Borfecchia, E., Meyer, R. J., Román-Leshkov, Y., Lamberti, C., & Dincǎ, M. (2018). Selective catalytic olefin epoxidation with MnII-exchanged MOF-5. ACS Catalysis, 8(1), 596–601. https://doi.org/10.1021/acscatal.7b02946

Tang, J., Dong, W., Wang, G., Yao, Y., Cai, L., Liu, Y., Zhao, X., Xu, J., & Tan, L. (2014). Efficient molybdenum(VI) modified Zr-MOF catalysts for epoxidation of olefins. RSC Advances, 4(81), 42977–42982. https://doi.org/10.1039/c4ra07133f

Wati, D. S., Nursilawati, N., & Purwita, R. (2024). Literature review : Pengembangan potensi limbah kelapa sawit sebagai sumber energi terbarukan dengan proses hidrolisis guna menyongsong indonesia emas 2045. CHEDS: Journal of Chemistry, Education, and Science, 8(2), 197–202.

Zhang, H., Lu, X., Yang, L., Hu, Y., Yuan, M., Wang, C., Liu, Q., Yue, F., Zhou, D., & Xia, Q. (2021). Efficient air epoxidation of cycloalkenes over bimetal-organic framework ZnCo-MOF materials. Molecular Catalysis, 499, 111300. https://doi.org/10.1016/j.mcat.2020.111300




DOI: https://doi.org/10.30743/cheds.v9i2.12412

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Laela Mukaromah, Neza Rahayu Palapa, Bijak Riyandi Ahadito

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.