PENGARUH PENAMBAHAN CROSSLINKER TERHADAP KARAKTERISTIK KOMPOSIT SELULOSA BAKTERI-EKSTRAK DAUN CINCAU (Cyclea barbata)

Ananda Putra, Annisa Salsabilla

Abstract


Selulosa bakteri (SB) merupakan biopolimer unik yang digunakan dalam berbagai bidang seperti makanan, kosmetik, pembuatan kertas, dan biomedis. Pemanfaatan SB di bidang biomedis antara lain pembalut luka, sistem penghantaran obat yang dapat dikontrol, pemurnian darah, dan rekayasa jaringan. Selulosa bakteri diproduksi oleh bakteri Acetobacter xylinum dengan media pertumbuhan campuran dari air kelapa tua, sukrosa, dan urea. Selulosa bakteri yang dihasilkan dikompositkan dengan ekstrak daun cincau sehingga dihasilkan komposit selulosa bakteri-ekstrak daun cincau (KSB-EDC). Penelitian ini bertujuan untuk mengetahui pengaruh penambahan crosslinker amilum jagung 1%, 2%,  dan 3% terhadap sifat fisik dan mekanik dari komposit selulosa bakteri-ekstrak daun cincau yang telah direndam crosslinker (KSB-EDCC). Penambahan crosslinker dapat menurunkan persentase kadar air KSB-EDCC 3% dengan nilai 98,23%, KSB-EDC 99,27% dan SB 99,32%. Hasil uji kuat tarik terbaik adalah dengan penambahan crosslinker dengan konsentrasi 3% (KSB-EDCC) dengan nilai 72,08 MPa, KSB-EDC 44,91 MPa dan SB 41,97 MPa.


Keywords


Selulosa Bakteri

Full Text:

PDF

References


Aswini, K., Gopal, N. O., & Uthandi, S. (2020). Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnology, 20(1), 1–16. https://doi.org/10.1186/s12896-020-00639-6

Chang, S. T., Chen, L. C., Lin, S. Bin, & Chen, H. H. (2012). Nano-biomaterials application: Morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocolloids, 27(1), 137–144. https://doi.org/10.1016/j.foodhyd.2011.08.004

Fijałkowski, K., Żywicka, A., Drozd, R., Junka, A. F., Peitler, D., Kordas, M., Konopacki, M., Szymczyk, P., & Rakoczy, R. (2017). Increased water content in bacterial cellulose synthesized under rotating magnetic fields. Electromagnetic Biology and Medicine, 36(2), 192–201. https://doi.org/10.1080/15368378.2016.1243554

Hamaker, B. R., Tuncil, Y. E., & Shen, X. (2019). Carbohydrates of the Kernel. Corn: Chemistry and Technology, 3rd Edition, 305–318. https://doi.org/10.1016/B978-0-12-811971-6.00011-5

Heinze, T. (2015). Cellulose: Structure and properties. Advances in Polymer Science, 271, 1–52. https://doi.org/10.1007/12_2015_319

Heinze, T., El Seoud, O. A., & Koschella, A. (2018). Production and Characteristics of Cellulose from Different Sources. https://doi.org/10.1007/978-3-319-73168-1_1

Maitra, J., & Shukla, V. K. (2014). Cross-linking in Hydrogels - A Review. American Journal of Polymer Science, 4(2), 25–31. https://doi.org/10.5923/j.ajps.20140402.01

Mohite, B. V., Koli, S. H., & Patil, S. V. (2018). Bacterial Cellulose-Based Hydrogels: Synthesis, Properties, and Applications. 1–22. https://doi.org/10.1007/978-3-319-76573-0_2-1

Moniri, M., Moghaddam, A. B., Azizi, S., Rahim, R. A., Ariff, A. Bin, Saad, W. Z., Navaderi, M., & Mohamad, R. (2017). Production and status of bacterial cellulose in biomedical engineering. Nanomaterials, 7(9), 1–26. https://doi.org/10.3390/nano7090257

Muthumeenal, A., Sundar Pethaiah, S., & Nagendran, A. (2017). Biopolymer Composites in Fuel Cells. Biopolymer Composites in Electronics, 185–217. https://doi.org/10.1016/B978-0-12-809261-3.00006-1

Noviyanti, N., Yueniwati, Y., Ali, M., Rahardjo, B., & Permatasari, G. W. (2020). Cyclea barbata miers ethanol extract and coclaurine induce estrogen receptor α in the development of follicle pre-ovulation. Open Access Macedonian Journal of Medical Sciences, 8(A), 434–440. https://doi.org/10.3889/oamjms.2020.4418

Quero, F., Nogi, M., Lee, K. Y., Poel, G. Vanden, Bismarck, A., Mantalaris, A., Yano, H., & Eichhorn, S. J. (2011). Cross-linked bacterial cellulose networks using glyoxalization. ACS Applied Materials and Interfaces, 3(2), 490–499. https://doi.org/10.1021/am101065p

R. Rebelo, A., Archer, A. J., Chen, X., Liu, C., Yang, G., & Liu, Y. (2018). Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Science and Technology of Advanced Materials, 19(1), 203–211. https://doi.org/10.1080/14686996.2018.1430981

Shah, N., Ul-Islam, M., Khattak, W. A., & Park, J. K. (2013). Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydrate Polymers, 98(2), 1585–1598. https://doi.org/10.1016/j.carbpol.2013.08.018

Sun, S., Sun, S., Cao, X., & Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49–58. https://doi.org/10.1016/J.BIORTECH.2015.08.061

Tang, S., Chi, K., Xu, H., Yong, Q., Yang, J., & Catchmark, J. M. (2021). A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications. Carbohydrate Polymers, 252(April 2020), 117123. https://doi.org/10.1016/j.carbpol.2020.117123

Ullah, M. W., Manan, S., Kiprono, S. J., Ul-Islam, M., & Yang, G. (2019). Synthesis, structure, and properties of bacterial cellulose. Nanocellulose: From Fundamentals to Advanced Materials, 81–114. https://doi.org/10.1002/9783527807437.ch4

Ye, J., Zheng, S., Zhang, Z., Yang, F., Ma, K., Feng, Y., Zheng, J., Mao, D., & Yang, X. (2019). Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresource Technology, 274(December 2018), 518–524. https://doi.org/10.1016/j.biortech.2018.12.028




DOI: https://doi.org/10.30743/cheds.v6i2.6129

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Annisa Salsabilla, Ananda Putra

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

CHEDS: Journal of Chemistry, Education, and Science

Program Studi Pendidikan Kimia, FKIP - Universitas Islam Sumatera Utara
Kampus Induk UISU Jl. Sisingamangaraja XII Teladan, Medan 
Email: pend.kimia@fkip.uisu.ac.id | cheds@fkip.uisu.ac.id

Creative Commons License