PRODUKSI BIOETANOL DARI BIOMASSA MINYAK SAWIT (SEBUAH TINJAUAN)

Amalia Cantika Asyafa, Teguh Pambudi, Hilman Imadul Umam

Abstract


Tujuan dari penelitian ini adalah untuk mengetahui bagaimana pengaruh luas permukaan dan sifat fisik batok kelapa yang dibuang terhadap aktivator gelombang mikro dan NaOH. Tungku digunakan untuk mengarbonisasi bahan selama dua jam pada suhu 600°C. Kimia fisika (D), fisika kimia (800 watt selama 20 menit), aktivasi kimia (A) menggunakan NaOH 20%, dan fisika (C) menggunakan microwave. Analisa yang dilakukan meliputi pengujian luas permukaan, kadar abu, kadar karbon, kadar air, dan kadar evaporasi dengan menggunakan metode UV-Vis. Temuan penelitian ini menunjukkan bahwa aktivator yang digunakan mempunyai pengaruh yang signifikan terhadap sifat karbon aktif berbahan tempurung kelapa. Dengan konsentrasi udara 3,19%, aktivasi A menghasilkan karbon aktif dengan sifat paling besar. kadar penguapan 9,05%, kadar abu 5,64%, kadar karbon 85,31%, dan daya serap iodium 1047,16 mg/g. Analisis luas permukaan menunjukkan bahwa variasi aktivator mempengaruhi luas permukaan karbon aktif dengan nilai 14,240 m2/g, 14,233 m2/g, 14,219 m2/g dan 14,195 m2/g.


Keywords


bioetanol; fermentasi; biomassa kelapa sawit; perlakuan awal; sakarifikasi.

Full Text:

PDF

References


Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6), 675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

Ahmad, F. B., Zhang, Z., Doherty, W. O. S., & O’Hara, I. M. (2019). The prospect of microbial oil production and applications from oil palm biomass. Biochemical Engineering Journal, 143, 9–23. https://doi.org/10.1016/j.bej.2018.12.003

Ahmad Rizal, N. F. A., Ibrahim, M. F., Zakaria, M. R., Abd-Aziz, S., Yee, P. L., & Hassan, M. A. (2018). Pre-treatment of oil palm biomass for fermentable sugars production. Molecules, 23(6), 1–14. https://doi.org/10.3390/molecules23061381

Ahmad, T. Y., Hirajima, T., Kumagai, S., & Sasaki, K. (2010). Production of solid biofuel from agricultural wastes of the palm oil industry by hydrothermal treatment. Waste and Biomass Valorization, 1(4), 395–405. https://doi.org/10.1007/s12649-010-9045-3 Akli, K., Maryam, M., Senjawati, M. I., & Ilyas, R. A. (2022). Eco-Friendly Bioprocessing Oil Palm Empty Fruit Bunch (Opefb) Fibers Into Nanocrystalline Cellulose (Ncc) Using White-Rot Fungi (Tremetes Versicolor) and Cellulase Enzyme (Trichoderma Reesei). Journal of Fibers and Polymer Composites, 1(2), 148–163. https://doi.org/10.55043/jfpc.v1i2.55 Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., & Cantarella, M. (2000). Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. Journal of Industrial Microbiology and Biotechnology, 25(4), 184–192. https://doi.org/10.1038/sj.jim.7000054 Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093 Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., & Smith, D. L. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, 139(April 2020), 110691. https://doi.org/10.1016/j.rser.2020.110691 Arce, C., & Kratky, L. (2022). Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization. IScience, 25(7), 104610. https://doi.org/10.1016/j.isci.2022.104610 Azmi, I. S., Azizan, A., & Mohd Salleh, R. (2018). Pretreatment of Oil Palm Frond (OPF) with Ionic Liquid. IOP Conference Series: Materials Science and Engineering, 358(1). https://doi.org/10.1088/1757899X/358/1/012071 Barlianti, V., Dahnum, D., Hendarsyah, H., & Abimanyu, H. (2015). Effect of Alkaline Pretreatment on Properties of Lignocellulosic Oil Palm Waste. Procedia Chemistry, 16, 195–201. https://doi.org/10.1016/j.proche.2015.12.036 Barlianti, V., Dahnum, D., Muryanto, ., Triwahyuni, E., Aristiawan, Y., & Sudiyani, Y. (2016). Enzymatic hydrolysis of oil palm empty fruit bunch to produce reducing sugar and its kinetic. E-Journal Menara Perkebunan, 83(1), 852. https://doi.org/10.22302/iribb.jur.mp.v83i1.12 Barreto, R. A. (2018). Fossil fuels, alternative energy and economic growth. Economic Modelling, 75(September 2020), 196–220. https://doi.org/10.1016/j.econmod.2018.06.019 Bhatia, S. K., Kim, S. H., Yoon, J. J., & Yang, Y. H. (2017). Current status and strategies for second generation biofuel production using microbial systems. Energy Conversion and Management, 148, 1142–1156. https://doi.org/10.1016/j.enconman.2017.06.073 Blümmel, M., Teymouri, F., Moore, J., Nielson, C., Videto, J., Kodukula, P., Pothu, S., Devulapalli, R., & Varijakshapanicker, P. (2018). Ammonia Fiber Expansion (AFEX) as spin off technology from 2nd generation biofuel for upgrading cereal straws and stovers for livestock feed. Animal Feed Science and Technology, 236(December 2017), 178–186. https://doi.org/10.1016/j.anifeedsci.2017.12.016 Boussaid, A.-L., Esteghlalian, A. R., Gregg, D. J., Lee, K. H., & Saddler, J. N. (2000). Steam Pretreatment of DouglasFir Wood Chips. Applied Biochemistry and Biotechnology, 84–86(1–9), 693–706. https://doi.org/10.1385/ABAB:84-86:1-9:693 Brethauer, S., & Wyman, C. E. (2010). Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology, 101(13), 4862–4874. https://doi.org/10.1016/j.biortech.2009.11.009 Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research, 2011(1). https://doi.org/10.4061/2011/787532 Bussemaker, M. J., Xu, F., & Zhang, D. (2013). Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Bioresource Technology, 148, 15–23. https://doi.org/10.1016/j.biortech.2013.08.106 Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. N. (n.d.). Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? In Biofuels (pp. 67–93). Springer Berlin Heidelberg. https://doi.org/10.1007/10_2007_064 Chavalparit, O., Rulkens, W. H., Mol, A. P. J., & Khaodhair, S. (2006). Options for Environmental Sustainability of the Crude Palm Oil Industry in Thailand Through Enhancement of Industrial Ecosystems. Environment, Development and Sustainability, 8(2), 271–287. https://doi.org/10.1007/s10668-005-9018-z Che Kamarludin, S. N., Jainal, M. S., Azizan, A., Safaai, N. S. M., & Daud, A. R. M. (2014). Mechanical pretreatment of lignocellulosic biomass for biofuel production. Applied Mechanics and Materials, 625, 838–841. https://doi.org/10.4028/www.scientific.net/AMM.625.838 Chew, T. L., & Bhatia, S. (2008). Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresource Technology, 99(17), 7911–7922. https://doi.org/10.1016/j.biortech.2008.03.009 Chundawat, S. P. S., Pal, R. K., Zhao, C., Campbell, T., Teymouri, F., Videto, J., Nielson, C., Wieferich, B., Sousa, L., Dale, B. E., Balan, V., Chipkar, S., Aguado, J., Burke, E., & Ong, R. G. (2020). Ammonia fiber expansion (AFEX) pretreatment of lignocellulosic biomass. Journal of Visualized Experiments, 2020(158), 1–8. https://doi.org/10.3791/57488 Correa, D. F., Beyer, H. L., Possingham, H. P., Thomas-Hall, S. R., & Schenk, P. M. (2017). Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels. Renewable and Sustainable Energy Reviews, 74(October 2016), 1131–1146. https://doi.org/10.1016/j.rser.2017.02.068 Costa, A. G., Pinheiro, G. C., Pinheiro, F. G. C., Dos Santos, A. B., Santaella, S. T., & Leitão, R. C. (2013). Pretreatment strategies to improve anaerobic biodegradability and methane production potential of the palm oil mesocarp fibre. Chemical Engineering Journal, 230, 158–165. https://doi.org/10.1016/j.cej.2013.06.070 Deb, N., Alam, M. Z., Rahman, T., Al-Khatib, M. F. R., Jami, M. S., & Mansor, M. F. B. (2023). Acid–Base Pretreatment and Enzymatic Hydrolysis of Palm Oil Mill Effluent in a Single Reactor System for Production of Fermentable Sugars. International Journal of Polymer Science, 2023, 1–15. https://doi.org/10.1155/2023/8711491 Demirbaş, A. (2005). Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy Sources, 27(4), 327–337. https://doi.org/10.1080/00908310390266643 Dhandayuthapani, K., Sarumathi, V., Selvakumar, P., Temesgen, T., Asaithambi, P., & Sivashanmugam, P. (2021). Study on the ethanol production from hydrolysate derived by ultrasonic pretreated defatted biomass of chlorella sorokiniana NITTS3. Chemical Data Collections, 31, 100641. https://doi.org/10.1016/j.cdc.2020.100641 Dheeran, P., & Reddy, L. (2018). Biorefining of Lignocelluloses: An Opportunity for Sustainable Biofuel Production (pp. 1–23). https://doi.org/10.1007/978-3-319-67678-4_1 Domínguez de María, P. (2014). Recent trends in (ligno)cellulose dissolution using neoteric solvents: Switchable, distillable and bio-based ionic liquids. Journal of Chemical Technology and Biotechnology, 89(1), 11–18. https://doi.org/10.1002/jctb.4201 Fan, L. T., Lee, Y. ‐H, & Beardmore, D. H. (1980). Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnology and Bioengineering, 22(1), 177– 199. https://doi.org/10.1002/bit.260220113 Farah Amani, A. H., Toh, S. M., Tan, J. S., & Lee, C. K. (2018). The Efficiency of Using Oil Palm Frond Hydrolysate from Enzymatic Hydrolysis in Bioethanol Production. Waste and Biomass Valorization, 9(4), 539–548. https://doi.org/10.1007/s12649-017-0005-z Ferreira, S., Duarte, A. P., Ribeiro, M. H. L., Queiroz, J. A., & Domingues, F. C. (2009). Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering Journal, 45(3), 192–200. https://doi.org/10.1016/j.bej.2009.03.012 Gan, Q., Allen, S. J., & Taylor, G. (2003). Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modelling. Process Biochemistry, 38(7), 1003–1018. https://doi.org/10.1016/S0032-9592(02)00220-0 Ghose, T. K., & Bisaria, V. S. (1979). Studies on the mechanism of enzymatic hydrolysis of cellulosic substances. Biotechnology and Bioengineering, 21(1), 131–146. https://doi.org/10.1002/bit.260210110 Gollapalli, L. E., Dale, B. E., & Rivers, D. M. (2002). Predicting digestibility of ammonia fiber explosion (AFEX)treated rice straw. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 98– 100(1), 23–35. https://doi.org/10.1385/ABAB:98-100:1-9:23 Güney, T. (2019). Renewable energy, non-renewable energy and sustainable development. International Journal of Sustainable Development and World Ecology, 26(5), 389–397. https://doi.org/10.1080/13504509.2019.1595214 Gutiérrez, L. F., Sánchez, Ó. J., & Cardona, C. A. (2009). Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry. Bioresource Technology, 100(3), 1227–1237. https://doi.org/10.1016/j.biortech.2008.09.001 Hambali, E., & Rivai, M. (2017). The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030. IOP Conference Series: Earth and Environmental Science, 65, 012050. https://doi.org/10.1088/17551315/65/1/012050 Hamelinck, C. N., Van Hooijdonk, G., & Faaij, A. P. C. (2005). Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 28(4), 384–410. https://doi.org/10.1016/j.biombioe.2004.09.002 Hamzah, F., Idris, A., & Shuan, T. K. (2011). Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and β 1-4 glucosidase. Biomass and Bioenergy, 35(3), 1055–1059. https://doi.org/10.1016/j.biombioe.2010.11.020 Han, M., Kim, Y., Kim, S. W., & Choi, G.-W. (2011). High efficiency bioethanol production from OPEFB using pilot pretreatment reactor. Journal of Chemical Technology & Biotechnology, 86(12), 1527–1534. https://doi.org/10.1002/jctb.2668 Hari Krishna, S., Janardhan Reddy, T., & Chowdary, G. V. (2001). Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresource Technology, 77(2), 193–196. https://doi.org/10.1016/S0960-8524(00)00151-6 Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262(May), 310–318. https://doi.org/10.1016/j.biortech.2018.04.099 Hasunuma, T., & Kondo, A. (2012). Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochemistry, 47(9), 1287–1294. https://doi.org/10.1016/j.procbio.2012.05.004 Heap, L., Green, A., Brown, D., Van Dongen, B., & Turner, N. (2014). Role of Laccase as an Enzymatic Pretreatment Method to Improve Lignocellulosic Saccharification. Catalysis Science and Technology, 4(8), 2251–2259. https://doi.org/10.1039/c4cy00046c Heinonen, J., Tamminen, A., Uusitalo, J., & Sainio, T. (2012). Ethanol production from wood via concentrated acid hydrolysis, chromatographic separation, and fermentation. Journal of Chemical Technology and Biotechnology, 87(5), 689–696. https://doi.org/10.1002/jctb.2766 Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18. https://doi.org/10.1016/j.biortech.2008.05.027 Highley, T. L., & Dashek, W. V. (2020). Biotechnology in the Study of Brown- and White-Rot Decay. Forest Products Biotechnology, 25–46. https://doi.org/10.1201/9781482272734-4 Hoang, A. T., Nižetić, S., Ong, H. C., Mofijur, M., Ahmed, S. F., Ashok, B., Bui, V. T. V., & Chau, M. Q. (2021). Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere, 281(April), 130878. https://doi.org/10.1016/j.chemosphere.2021.130878 Homma, H., Shinoyama, H., Nobuta, Y., Terashima, Y., Amachi, S., & Fujii, T. (2007). Lignin-degrading activity of edible mushroom Strobilurus ohshimae that forms fruiting bodies on buried sugi (Cryptomeria japonica) twigs. Journal of Wood Science, 53(1), 80–84. https://doi.org/10.1007/s10086-006-0810-7 Hossain, N., Haji Zaini, J., & Mahlia, T. M. I. (2017). A Review of Bioethanol Production from Plant-based Waste Biomass by Yeast Fermentation. International Journal of Technology, 8(1), 5. https://doi.org/10.14716/ijtech.v8i1.3948 Hosseini Koupaie, E., Dahadha, S., Bazyar Lakeh, A. A., Azizi, A., & Elbeshbishy, E. (2019). Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. Journal of Environmental Management, 233(May), 774–784. https://doi.org/10.1016/j.jenvman.2018.09.106 Hosseini, S. A., & Shah, N. (2011). Modelling enzymatic hydrolysis of cellulose part I: Population balance modelling of hydrolysis by endoglucanase. Biomass and Bioenergy, 35(9), 3841–3848. https://doi.org/10.1016/j.biombioe.2011.04.026 Hu, Z., & Wen, Z. (2008). Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 38(3), 369–378. https://doi.org/10.1016/j.bej.2007.08.001 Ibrahim, M. F., Abd-Aziz, S., Yusoff, M. E. M., Phang, L. Y., & Hassan, M. A. (2015). Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel. Renewable Energy, 77, 447–455. https://doi.org/10.1016/j.renene.2014.12.047 Kamm, B. (2007). Production of Platform Chemicals and Synthesis Gas from Biomass. Angewandte Chemie International Edition, 46(27), 5056–5058. https://doi.org/10.1002/anie.200604514 Kelly-Yong, T. L., Lee, K. T., Mohamed, A. R., & Bhatia, S. (2007). Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy, 35(11), 5692–5701. https://doi.org/10.1016/j.enpol.2007.06.017 Khalil, H. P. S. A., Alwani, M. S., & Omar, A. K. M. (2006). Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources, 1(2), 220–232. https://doi.org/10.15376/biores.1.2.220-232 Kim, D. (2018). Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. Molecules, 23(2). https://doi.org/10.3390/molecules23020309 Kootstra, A. M. J., Beeftink, H. H., Scott, E. L., & Sanders, J. P. M. (2009). Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal, 46(2), 126–131. https://doi.org/10.1016/j.bej.2009.04.020 Kucharska, K., Rybarczyk, P., Hołowacz, I., Łukajtis, R., Glinka, M., & Kamiński, M. (2018). Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules, 23(11), 1–32. https://doi.org/10.3390/molecules23112937 Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48(8), 3713– 3729. https://doi.org/10.1021/ie801542g Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(March), 877–891. https://doi.org/10.1016/j.rser.2018.03.111 Law, K.-N., Wan Daud, W. R., & Ghazali, A. (2007). Morphological and chemical nature of fiber strands of oil palm empty-fruit-bunch (OPEFB). BioResources, 2(3), 351–362. https://doi.org/10.15376/biores.2.4.351-362 Lee, K. M., & Ng, K. N. (2019). Effect of Ultrasonication in Organosolv Pretreatment for Enhancement of Fermentable Sugars Recovery from Palm Oil Empty Fruit Bunches. Progress in Energy and Environment, 11, 15–23. Li, Q., He, Y. C., Xian, M., Jun, G., Xu, X., Yang, J. M., & Li, L. Z. (2009). Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology, 100(14), 3570–3575. https://doi.org/10.1016/j.biortech.2009.02.040 Liu, X., Fatehi, P., & Ni, Y. (2011). Adsorption of Lignocelluloses Dissolved in Prehydrolysis Liquor of Kraft-Based Dissolving Pulp Process on Oxidized Activated Carbons. Industrial & Engineering Chemistry Research, 50(20), 11706–11711. https://doi.org/10.1021/ie201036q Lu, Y., & Mosier, N. S. (2007). Biomimetic catalysis for hemicellulose hydrolysis in corn stover. Biotechnology Progress, 23(1), 116–123. https://doi.org/10.1021/bp060223e Lynd, L. R., Van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 16(5), 577–583. https://doi.org/10.1016/j.copbio.2005.08.009 Mais, U., Esteghlalian, A. R., Saddler, J. N., & Mansfield, S. D. (2002). Enhancing the Enzymatic Hydrolysis of Cellulosic Materials Using Simultaneous Ball Milling. Applied Biochemistry and Biotechnology, 98–100(1–9), 815–832. https://doi.org/10.1385/ABAB:98-100:1-9:815 Malode, S. J., Prabhu, K. K., Mascarenhas, R. J., Shetti, N. P., & Aminabhavi, T. M. (2021). Recent advances and viability in biofuel production. Energy Conversion and Management: X, 10, 100070. https://doi.org/10.1016/j.ecmx.2020.100070 Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 15(5), 804–816. https://doi.org/10.1021/bp9900864 McMillan, J. D. (1997). Bioethanol production: Status and prospects. Renewable Energy, 10(2–3), 295–302. https://doi.org/10.1016/0960-1481(96)00081-X Mishra, P., Wahid, Z. ab, Singh, L., Zaid, R. M., Tabassum, S., Sakinah, M., & Jiang, X. (2022). Synergistic effect of ultrasonic and microwave pretreatment on improved biohydrogen generation from palm oil mill effluent. Biomass Conversion and Biorefinery, 12(9), 3655–3662. https://doi.org/10.1007/s13399-021-01285-4 Moilanen, U., Kellock, M., Galkin, S., & Viikari, L. (2011). The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzyme and Microbial Technology, 49(6–7), 492–498. https://doi.org/10.1016/j.enzmictec.2011.09.012 Mosier, N. S., Hendrickson, R., Brewer, M., Ho, N., Sedlak, M., Dreshel, R., Welch, G., Dien, B. S., Aden, A., & Ladisch, M. R. (2005). Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 125(2), 77–97. https://doi.org/10.1385/abab:125:2:077 Mubarak, M., Shaija, A., & Suchithra, T. V. (2016). Ultrasonication: An effective pre-treatment method for extracting lipid from Salvinia molesta for biodiesel production. Resource-Efficient Technologies, 2(3), 126–132. https://doi.org/10.1016/j.reffit.2016.07.005 Muller, C. D., Abu-Orf, M., & Novak, J. T. (2007). Application of Mechanical Shear in an Internal-Recycle for the Enhancement of Mesophilic Anaerobic Digestion. Water Environment Research, 79(3), 297–304. https://doi.org/10.2175/106143006x101935 Mussatto, S., & Teixeira, J. (2010). Lignocellulose as raw material in fermentation processes. Applied Microbiology an Microbial Biotechnology, 2, 897–907. http://repositorium.sdum.uminho.pt/handle/1822/16762%5Cn www.formatex.info Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https://doi.org/10.1016/j.rser.2009.10.003 Öhgren, K., Bura, R., Lesnicki, G., Saddler, J., & Zacchi, G. (2007). A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry, 42(5), 834–839. https://doi.org/10.1016/j.procbio.2007.02.003 Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization, 12(5), 2145–2169. https://doi.org/10.1007/s12649020-01123-0 Ometto, F., Quiroga, G., Pšenička, P., Whitton, R., Jefferson, B., & Villa, R. (2014). Impacts of microalgae pretreatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350–361. https://doi.org/10.1016/j.watres.2014.07.040 Onumaegbu, C., Mooney, J., Alaswad, A., & Olabi, A. G. (2018). Pre-treatment methods for production of biofuel from microalgae biomass. Renewable and Sustainable Energy Reviews, 93(April), 16–26. https://doi.org/10.1016/j.rser.2018.04.015 Pan, X., Xie, D., Gilkes, N., Gregg, D. J., & Saddler, J. N. (2005). Strategies to Enhance the Enzymatic Hydrolysis of Pretreated Softwood with High Residual Lignin Content. Applied Biochemistry and Biotechnology, 124(1–3), 1069–1080. https://doi.org/10.1385/ABAB:124:1-3:1069 Park, J. M., Oh, B. R., Seo, J. W., Hong, W. K., Yu, A., Sohn, J. H., & Kim, C. H. (2013). Efficient production of ethanol from empty palm fruit bunch fibers by fed-batch simultaneous saccharification and fermentation using saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 170(8), 1807–1814. https://doi.org/10.1007/s12010-013-0314-z Potumarthi, R., Baadhe, R. R., Nayak, P., & Jetty, A. (2013). Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresource Technology, 128, 113–117. https://doi.org/10.1016/j.biortech.2012.10.030 Rattanaporn, K., Tantayotai, P., Phusantisampan, T., Pornwongthong, P., & Sriariyanun, M. (2018). Organic acid pretreatment of oil palm trunk: Effect on enzymatic saccharification and ethanol production. Bioprocess and Biosystems Engineering, 41(4), 467–477. https://doi.org/10.1007/s00449-017-1881-0 Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Rupani, P. F., & Mohammadi, A. A. (2020). Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy, 199, 117457. https://doi.org/10.1016/j.energy.2020.117457 Richana, N., Winarti, C., Hidayat, T., & Prastowo, B. (2015). Hydrolysis of Empty Fruit Bunches of Palm Oil (Elaeis Guineensis Jacq.) by Chemical, Physical, and Enzymatic Methods for Bioethanol Production. International Journal of Chemical Engineering and Applications, 6(6), 422–426. https://doi.org/10.7763/ijcea.2015.v6.522 Rusanowska, P., Zieliński, M., Dudek, M., & Dȩbowski, M. (2018). Mechanical pretreatment of lignocellulosic biomass for methane fermentation in innovative reactor with cage mixing system. Journal of Ecological Engineering, 19(5), 219–224. https://doi.org/10.12911/22998993/89822 Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19–27. https://doi.org/10.1016/j.renene.2011.06.045 Sasmal, S., & Mohanty, K. (2018). Pretreatment of Lignocellulosic Biomass Toward Biofuel Production. 203–221. https://doi.org/10.1007/978-3-319-67678-4_9 Saxena, R. C., Adhikari, D. K., & Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews, 13(1), 167–178. https://doi.org/10.1016/j.rser.2007.07.011 Scordia, D., Cosentino, S. L., Lee, J. W., & Jeffries, T. W. (2011). Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass and Bioenergy, 35(7), 3018–3024. https://doi.org/10.1016/j.biombioe.2011.03.046 Sen, S. M., Binder, J. B., Raines, R. T., & Maravelias, C. T. (2012). Conversion of biomass to sugars via ionic liquid hydrolysis: process synthesis and economic evaluation. Biofuels, Bioproducts and Biorefining, 6(4), 444–452. https://doi.org/10.1002/bbb.1336 Sheh Hong, L., Ibrahim, D., & Che Omar, I. (2012). Oil Palm Frond for the Production of Bioethanol. International Journal of Biochemistry and Biotechnology, 1(1), 7–011. http://internationalscholarsjournals.org Sinha, P., & Pandey, A. (2011). An evaluative report and challenges for fermentative biohydrogen production. International Journal of Hydrogen Energy, 36(13), 7460–7478. https://doi.org/10.1016/j.ijhydene.2011.03.077 Siramon, P., Punsuvon, V., & Vaithanomsat, P. (2018). Production of Bioethanol from Oil Palm Empty Fruit Bunch via Acid Impregnation-Steam Explosion Pretreatment. Waste and Biomass Valorization, 9(8), 1407–1414. https://doi.org/10.1007/s12649-017-9924-y Stadler, M., Fournier, J., Læssøe, T., Lechat, C., Tichy, H. V., & Piepenbring, M. (2008). Recognition of hypoxyloid and xylarioid Entonaema species and allied Xylaria species from a comparison of holomorphic morphology, HPLC profiles, and ribosomal DNA sequences. Mycological Progress, 7(1), 53–73. https://doi.org/10.1007/s11557-008-0553-5 Su, C. H., Chung, M. H., Hsieh, H. J., Chang, Y. K., Ding, J. C., & Wu, H. M. (2012). Enzymatic hydrolysis of lignocellulosic biomass in ionic liquid media for fermentable sugar production. Journal of the Taiwan Institute of Chemical Engineers, 43(4), 573–577. https://doi.org/10.1016/j.jtice.2012.02.001 Sukhang, S., Choojit, S., Reungpeerakul, T., & Sangwichien, C. (2020). Bioethanol production from oil palm empty fruit bunch with SSF and SHF processes using Kluyveromyces marxianus yeast. Cellulose, 27(1), 301–314. https://doi.org/10.1007/s10570-019-02778-2 Sun, S., Cao, X., Sun, S., Xu, F., Song, X., Sun, R. C., & Jones, G. L. (2014). Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation. Biotechnology for Biofuels, 7(1), 1–12. https://doi.org/10.1186/s13068-014-0116-8 Surati, M. A., Jauhari, S., & Desai, K. R. (2012). A brief review : Microwave assisted organic reaction. Applied Science Research, 4(1), 645–661. Szczodrak, J., & Targoński, Z. (1988). Selection of thermotolerant yeast strains for simultaneous saccharification and fermentation of cellulose. Biotechnology and Bioengineering, 31(4), 300–303. https://doi.org/10.1002/bit.260310404 Tantayotai, P., Rachmontree, P., Rodiahwati, W., Rattanaporn, K., & Sriariyanun, M. (2016). Production of Ionic Liquid-tolerant Cellulase Produced by Microbial Consortium and its Application in Biofuel Production. Energy Procedia, 100, 155–159. https://doi.org/10.1016/j.egypro.2016.10.158 Tassinari, T., & Macy, C. (1977). Differential speed two roll mill pretreatment of cellulosic materials for enzymatic hydrolysis. Biotechnology and Bioengineering, 19(9), 1321–1330. https://doi.org/10.1002/bit.260190906 Tayyab, M., Noman, A., Islam, W., Waheed, S., Arafat, Y., Ali, F., Zaynab, M., Lin, S., Zhang, H., & Lin, W. (2018). Bioethanol Production From Lignocellulosic Biomass by Environment-frendly Pretreatment Methods: A Rebiew. Applied Ecology and Environmental Research, 16(1), 225–249. https://doi.org/10.15666/aeer/1601_225249 Teramoto, Y., Tanaka, N., Lee, S.-H., & Endo, T. (2008). Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling. Biotechnology and Bioengineering, 99(1), 75–85. https://doi.org/10.1002/bit.21522 Tsegaye, B., Balomajumder, C., & Roy, P. (2019). Microbial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel production: an overview and future prospect. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0094-x Tu, W. C., & Hallett, J. P. (2019). Recent advances in the pretreatment of lignocellulosic biomass. Current Opinion in Green and Sustainable Chemistry, 20, 11–17. https://doi.org/10.1016/j.cogsc.2019.07.004 US Department of Agriculture. 2023. Palm Oil 2023 World Production. https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=4243000. (12 Agustus 2023). Repository.Umsu.Ac.Id, 7(1), 1–15. http://repository.umsu.ac.id/handle/123456789/2311 Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30(6), 1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002 Vasić, K., Knez, Ž., & Leitgeb, M. (2021). Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules, 26(3), 753. https://doi.org/10.3390/molecules26030753 Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 30(6), 1447–1457. https://doi.org/10.1016/j.biotechadv.2012.03.003 Widjaja, A., Agnesty, S. Y., Sangian, H. F., & Gunawan, S. (2015). Application of ionic liquid [DMIM]DMP pretreatment in the hydrolysis of sugarcane Bagasse for biofuel production. Bulletin of Chemical Reaction Engineering &Amp; Catalysis, 10(1), 70–77. https://doi.org/10.9767/bcrec.10.1.7143.70-77 Wu, Z., Peng, K., Zhang, Y., Wang, M., Yong, C., Chen, L., Qu, P., Huang, H., Sun, E., & Pan, M. (2022). Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Materials Today Bio, 16(July), 100445. https://doi.org/10.1016/j.mtbio.2022.100445 Wyman, C. E. (1999). Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, 24, 189–226. https://doi.org/10.1146/annurev.energy.24.1.189 Wyman, C. E., Spindler, D. D., & Grohmann, K. (1992). Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass and Bioenergy, 3(5), 301–307. https://doi.org/10.1016/09619534(92)90001-7 Zhang, R., & Zhang, Z. (1999). Biogasification of rice straw with an anaerobic-phased solids digester system. Bioresource Technology, 68(3), 235–245. https://doi.org/10.1016/S0960-8524(98)00154-0 Zhao, X., Wang, L., Lu, X., & Zhang, S. (2014). Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation. Bioresource Technology, 158, 12–18. https://doi.org/10.1016/j.biortech.2014.01.122 Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42(1), 35–53. https://doi.org/10.1016/j.pecs.2014.01.001 Zhou, Z., Liu, D., & Zhao, X. (2021). Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews, 146(April), 111169. https://doi.org/10.1016/j.rser.2021.111169




DOI: https://doi.org/10.30743/cheds.v7i2.8122

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Amalia Cantika Asyafa, Teguh Pambudi, Hilman Imadul Umam

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

CHEDS: Journal of Chemistry, Education, and Science

Program Studi Pendidikan Kimia, FKIP - Universitas Islam Sumatera Utara
Kampus Induk UISU Jl. Sisingamangaraja XII Teladan, Medan 
Email: pend.kimia@fkip.uisu.ac.id | cheds@fkip.uisu.ac.id

Creative Commons License