HR Analytics for Predicting Job Satisfaction in Hybrid Work
Abstract
Keywords
Full Text:
PDFReferences
Bakker, A. B., & de Vries, J. D. (2021). Job Demands–Resources theory and self-regulation: New explanations and remedies for job burnout. Applied Psychology, 70(1), 70–82. https://doi.org/10.1111/apps.12317
Bakker, A. B., & Demerouti, E. (2007). The Job Demands–Resources model: State of the art. Journal of Managerial Psychology, 22(3), 309–328. https://doi.org/10.1108/02683940710733115
Basu, S., Bhattacharya, P., & Ghosh, S. (2023). Predicting employee engagement using machine learning techniques: A review. Human Resource Management Review, 33(2), 100918. https://doi.org/10.1016/j.hrmr.2022.100918
Bogen, M., & Rieke, A. (2024). Governing bias in algorithmic employment systems. Harvard Journal of Law & Technology, 37(1), 45–87. https://doi.org/10.2139/ssrn.3459982
Chalfin, A., & Tambe, P. (2024). The Promise and Perils of Artificial Intelligence for Human Resources Management. ILR Review, 77(2), 285–312. https://doi.org/10.1177/00197939231123467
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953
Day, A., Paquet, S., Scott, N., & Hambley, L. (2022). Perils of digital communication: Workload, well-being, and psychological strain. Journal of Occupational Health Psychology, 27(3), 234–248. https://doi.org/10.1037/ocp0000299
Demerouti, E., Bakker, A. B., Nachreiner, F., & Schaufeli, W. B. (2001). The Job Demands–Resources model of burnout. Journal of Applied Psychology, 86(3), 499–512. https://doi.org/10.1037/0021-9010.86.3.499
Derks, D., & Bakker, A. B. (2024). The cognitive-affective costs of "always-on" digital work. Computers in Human Behavior, 150, 107236. https://doi.org/10.1016/j.chb.2023.107236
He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284. https://doi.org/10.1109/TKDE.2008.239
Johnson, J. M., & Khoshgoftaar, T. M. (2024). Handling class imbalance in human resource analytics: A comparative study of machine learning methods. Journal of Big Data, 11(1), 45–62. https://doi.org/10.1186/s40537-024-00845-3
Kniffin, K. M., Narayanan, J., Anseel, F., & Antonakis, J. (2021). COVID-19 and the workplace: Implications, issues, and insights for future research and action. American Psychologist, 76(1), 63–77. https://doi.org/10.1037/amp0000716
Korunka, C., & Kubicek, B. (2023). ICT demands and job crafting in hybrid work. Journal of Occupational and Organizational Psychology, 96(2), 345–364. https://doi.org/10.1111/joop.12402
Lesener, T., Gusy, B., & Wolter, C. (2019). The Job Demands–Resources model: A meta-analytic review of longitudinal studies. Work & Stress, 33(1), 76–103. https://doi.org/10.1080/02678373.2018.1529065
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774.
Montealegre, R., & Velleman, P. F. (2021). Black-box machine learning in HR: Opportunities and challenges. Human Resource Management Review, 31(4), 100776. https://doi.org/10.1016/j.hrmr.2020.100776
Pape, S., Goebel, S., & Henke, M. (2023). Predicting employee turnover with machine learning: An empirical study. Human Resource Management Journal, 33(3), 456–478. https://doi.org/10.1111/1748-8583.12432
Raghuram, S., Hill, N. S., Gibbs, J. L., & Maruping, L. M. (2021). Virtual work: Bridging research clusters. Academy of Management Annals, 15(1), 287–324. https://doi.org/10.5465/annals.2019.0122
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?" Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144. https://doi.org/10.1145/2939672.2939778
Schaufeli, W. B., & Taris, T. W. (2023a). A critical review of the Job Demands–Resources Model: Implications for improving work and health. European Journal of Work and Organizational Psychology, 32(1), 1–15. https://doi.org/10.1080/1359432X.2022.2135809
Schaufeli, W. B., & Taris, T. W. (2023b). The Job Demands–Resources model 2.0: More about resources, crafting, and balance. European Journal of Work and Organizational Psychology, 32(1), 16–30. https://doi.org/10.1080/1359432X.2022.2162382
Tambe, P., Cappelli, P., & Yakubovich, V. (2022). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 64(3), 5–24. https://doi.org/10.1177/00081256221075956
Wang, Y., Zhang, J., & Li, H. (2023). Real-time sentiment analysis for employee well-being: An AI-based approach. Information Systems Frontiers, 25(5), 1345–1361. https://doi.org/10.1007/s10796-022-10345-8
Yang, D., Holtz, D., & Neff, G. (2023). The paradox of hybrid work: Autonomy and digital fragmentation. Organization Science, 34(2), 123–140. https://doi.org/10.1287/orsc.2022.1650
DOI: https://doi.org/10.30743/mkd.v9i2.12015
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Melissa Yunda Hardevianty, Imam Yuadi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under CC BY 4.0


5.png)

.png)
