NIASIN DAN NIASINAMIDA: TINJAUAN BIOKIMIA, MANFAAT KESEHATAN, DAN PERKEMBANGAN TERBARU VITAMIN B3

Zahrotun Nafisah, Sri Yulandari Simangunsong, Junita Dongoran, Putri Sulistiawati

Abstract


Vitamin B3 mengacu pada dua senyawa utama, niasin dan nikotinamida, yang secara alami ditemukan dalam berbagai sumber makanan seperti daging, ikan, jeroan, dan biji-bijian. Kedua senyawa tersebut berfungsi sebagai prekursor penting dalam biosintesis koenzim NAD dan NADP, yang penting untuk hampir semua proses metabolisme dalam sel hidup. Meskipun sering dianggap dapat dipertukarkan dalam perannya sebagai vitamin, niasin dan niasinamida menunjukkan efek farmakologis yang berbeda. Studi klinis telah menunjukkan bahwa niasin dosis tinggi dapat meningkatkan profil lipid pada pasien dengan penyakit kardiovaskular, tetapi penggunaannya terbatas karena efek sampingnya. Sebaliknya, niasinamida banyak digunakan untuk mengatasi masalah kesehatan seperti jerawat, diabetes, dan gangguan neurologis, dengan profil keamanan yang lebih baik. Baru-baru ini, NR, bentuk baru vitamin B3, telah mendapat perhatian karena kemampuannya untuk secara signifikan meningkatkan kadar NAD intraseluler dengan toksisitas minimal. Tinjauan naratif ini bertujuan untuk mengeksplorasi perbedaan struktural dan fungsional, manfaat kesehatan, efek samping niasin dan niacinamide, serta peran NR yang muncul sebagai vitamin B3 generasi berikutnya.

Keywords


Niasinamida; nikotinamid ribosida; vitamin B3.

Full Text:

PDF

References


Aggett, P. J., Ahnen, R. T., Aydemir, T. B., Bailey, L. B., Bettendorff, L., Blaner, W. S., Borum, P. R., Bruno, R. S., Calder, P. C., Caudill, M. A., Cheuvront, S. N., Coates, P. M., Collins, J. F., Costello, R. B., da Silva, V. R., Diamond, A. M., Ferland, G., Fleet, J. C., Fukagawa, N. K., … Zimmermann, M. B. (2020). Contributors to Volume 1. Dalam Present Knowledge in Nutrition (hlm. xi–xiii). Elsevier. https://doi.org/10.1016/b978-0-323-66162-1.01002-7

Agrawal, U., Raju, R., & Udwadia, Z. F. (2020). Favipiravir: A new and emerging antiviral option in COVID-19. Medical Journal Armed Forces India, 76(4), 370–376. https://doi.org/https://doi.org/10.1016/j.mjafi.2020.08.004

Arora, M. K., Grover, P., Asdaq, S. M. B., Mehta, L., Tomar, R., Imran, Mohd., Pathak, A., Jangra, A., Sahoo, J., Alamri, A. S., Alsanie, W. F., & Alhomrani, M. (2021). Potential role of nicotinamide analogues against SARS-COV-2 target proteins. Saudi Journal of Biological Sciences, 28(12), 7567–7574. https://doi.org/https://doi.org/10.1016/j.sjbs.2021.09.072

Belenky, P., Racette, F. G., Bogan, K. L., McClure, J. M., Smith, J. S., & Brenner, C. (2007). Nicotinamide Riboside Promotes Sir2 Silencing and Extends Lifespan via Nrk and Urh1/Pnp1/Meu1 Pathways to NAD+. Cell, 129(3), 473–484. https://doi.org/10.1016/j.cell.2007.03.024

Berge, K. G., & Canner, P. L. (1991). Coronary drug project: experience with niacin. Coronary Drug Project Research Group. Eur J Clin Pharmacol, 40 Suppl 1, S49–51.

Berson, D. S., Osborne, R., Oblong, J. E., Hakozaki, T., Johnson, M. B., & Bissett, D. L. (2014). Niacinamide: A Topical Vitamin with Wide-Ranging Skin Appearance Benefits.

Boo, Y. C. (2021). Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation. Antioxidants (Basel), 10(8).

Canner, P. L., Berge, K. G., Wenger, N. K., Stamler, J., Friedman, L., Prineas, R. J., & Friedewald, W. (1986). Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol, 8(6), 1245–1255.

Collins, T., Caimi, R., Lynch, P., Sheffield, J., Mitra, A., Stueber, K., & Smith, Y. (1991). The Effects of Nicotinamide and Hyperbaric Oxygen on Skin Flap Survival. Scandinavian journal of plastic and reconstructive surgery and hand surgery / Nordisk plastikkirurgisk forening [and] Nordisk klubb for handkirurgi, 25, 5–7. https://doi.org/10.3109/02844319109034915

Comaish, J. S., Felix, R. H., & McGrath, H. (1976a). Topically applied niacinamide in isoniazid-induced pellagra. Arch Dermatol, 112(1), 70–72.

Comaish, J. S., Felix, R. H., & McGrath, H. (1976b). Topically applied niacinamide in isoniazid-induced pellagra. Arch Dermatol, 112(1), 70–72.

Curtin, N., Bányai, K., Thaventhiran, J., Le Quesne, J., Helyes, Z., & Bai, P. (2020). Repositioning PARP inhibitors for SARS-CoV-2 infection(COVID-19); a new multi-pronged therapy for acute respiratory distress syndrome? Dalam British Journal of Pharmacology (Vol. 177, Nomor 16, hlm. 3635–3645). John Wiley and Sons Inc. https://doi.org/10.1111/bph.15137

Damian, D. L., Patterson, C. R. S., Stapelberg Michael and Park, J., Barnetson, R. S. C., & Halliday, G. M. (2007). UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide. J Invest Dermatol, 128(2), 447–454.

Dollerup, O. L., Christensen, B., Svart, M., Schmidt, M. S., Sulek, K., Ringgaard, S., Stødkilde-Jørgensen, H., Møller, N., Brenner, C., Treebak, J. T., & Jessen, N. (2018). A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: Safety, insulin-sensitivity, and lipid-mobilizing effects. American Journal of Clinical Nutrition, 108(2), 343–353. https://doi.org/10.1093/ajcn/nqy132

Dolopikou, C. F., Kourtzidis, I. A., Margaritelis, N. V, Vrabas, I. S., Koidou, I., Kyparos, A., Theodorou, A. A., Paschalis, V., & Nikolaidis, M. G. (2020). Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. European Journal of Nutrition, 59(2), 505–515. https://doi.org/10.1007/s00394-019-01919-4

Fletcher, R. S., Ratajczak, J., Doig, C. L., Oakey, L. A., Callingham, R., Da Silva Xavier, G., Garten, A., Elhassan, Y. S., Redpath, P., Migaud, M. E., Philp, A., Brenner, C., Canto, C., & Lavery, G. G. (2017). Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Molecular Metabolism, 6(8), 819–832. https://doi.org/https://doi.org/10.1016/j.molmet.2017.05.011

Fukuwatari, T., & Shibata, K. (2013). Nutritional aspect of tryptophan metabolism. Dalam International Journal of Tryptophan Research (Vol. 6, Nomor SUPPL.1, hlm. 3–8). https://doi.org/10.4137/IJTR.S11588

Gale, E. A. M., Bingley, P. J., Emmett, C. L., Collier, T., & European Nicotinamide Diabetes Intervention Trial (ENDIT) Group. (2004). European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet, 363(9413), 925–931.

Gehring, W. (2004a). Nicotinic acid/niacinamide and the skin. J Cosmet Dermatol, 3(2), 88–93.

Gehring, W. (2004b). Nicotinic acid/niacinamide and the skin. J Cosmet Dermatol, 3(2), 88–93.

Greenbaum, G. H. (1970). An evaluation of niacinamide in the treatment of childhood schizophrenia. Am J Psychiatry, 127(1), 89–92.

Grunewald, M. E., Chen, Y., Kuny, C., Maejima, T., Lease, R., Ferraris, D., Aikawa, M., Sullivan, C. S., Perlman, S., & Fehr, A. R. (2019). The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathogens, 15(5). https://doi.org/10.1371/journal.ppat.1007756

Hakozaki, T., Minwalla, L., Zhuang, J., Chhoa, M., Matsubara, A., Miyamoto, K., Greatens, A., Hillebrand G G and Bissett, D. L., & Boissy, R. E. (2002). The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br J Dermatol, 147(1), 20–31.

Heer, C. D., Sanderson, D. J., Voth, L. S., Alhammad, Y. M. O., Schmidt, M. S., Trammell, S. A. J., Perlman, S., Cohen, M. S., Fehr, A. R., & Brenner, C. (2020). Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity. Journal of Biological Chemistry, 295(52), 17986–17996. https://doi.org/10.1074/jbc.RA120.015138

Hou, Y., Lautrup, S., Cordonnier, S., Wang, Y., Croteau, D. L., Zavala, E., Zhang, Y., Moritoh, K., O’Connell, J. F., Baptiste, B. A., Stevnsner, T. V., Mattson, M. P., & Bohr, V. A. (2018). NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proceedings of the National Academy of Sciences of the United States of America, 115(8), E1876–E1885. https://doi.org/10.1073/pnas.1718819115

Hou, Y., Wei, Y., Lautrup, S., Yang, B., Wang, Y., Cordonnier, S., Mattson, M. P., Croteau, D. L., & Bohr, V. A. (2021). NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS–STING. Proceedings of the National Academy of Sciences, 118(37), e2011226118. https://doi.org/10.1073/pnas.2011226118

HPS2-THRIVE Collaborative Group, Landray, M. J., Haynes, R., Hopewell, J. C., Parish, S., Aung, T., Tomson, J., Wallendszus, K., Craig, M., Jiang, L., Collins, R., & Armitage, J. (2014). Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med, 371(3), 203–212.

Huber, R., & Wong, A. (2020). Nicotinamide: An Update and Review of Safety & Differences from Niacin. Skin Therapy Lett, 25(5), 7–11.

Hung, I. F. N., Lung, K. C., Tso, E. Y. K., Liu, R., Chung, T. W. H., Chu, M. Y., Ng, Y. Y., Lo, J., Chan, J., Tam, A. R., Shum, H. P., Chan, V., Wu, A. K. L., Sin, K. M., Leung, W. S., Law, W. L., Lung, D. C., Sin, S., Yeung, P., … Yuen, K. Y. (2020). Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. The Lancet, 395(10238), 1695–1704. https://doi.org/10.1016/S0140-6736(20)31042-4

Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, its Panel on Folate Other B Vitamins, & Choline. (1998). Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B(6), Folate, Vitamin B(12), Pantothenic Acid, Biotin, and Choline. National Academies Press (US).

Jacobson, E. L., Shieh, W. M., & Huang, A. C. (1999). Mapping the role of NAD metabolism in prevention and treatment of carcinogenesis. Mol Cell Biochem, 193(1–2), 69–74.

Jenkins, D. J. A., Spence, J. D., Giovannucci Edward L and Kim, Y.-I., Josse, R., Vieth, R., Blanco Mejia, S., Viguiliouk, E., Nishi Stephanie and Sahye-Pudaruth, S., Paquette, M., Patel, D., Mitchell, S., Kavanagh, M., Tsirakis, T., Bachiri, L., Maran, A., Umatheva Narmada and McKay, T., Trinidad, G., Bernstein, D., Chowdhury, A., … Sievenpiper, J. L. (2018). Supplemental Vitamins and Minerals for CVD Prevention and Treatment. J Am Coll Cardiol, 71(22), 2570–2584.

Joshi, S., Parkar, J., Ansari, A., Vora, A., Talwar, D., Tiwaskar, M., Patil, S., & Barkate, H. (2021). Role of favipiravir in the treatment of COVID-19. Dalam International Journal of Infectious Diseases (Vol. 102, hlm. 501–508). Elsevier B.V. https://doi.org/10.1016/j.ijid.2020.10.069

Kademian, M., Bechtel, M., & Zirwas, M. (2007). Case reports: new onset flushing due to unauthorized substitution of niacin for nicotinamide. J Drugs Dermatol, 6(12), 1220–1221.

Kang, S., Kim, C.-H., Jung, H., Kim, E., Song, H.-T., & Lee, J. E. (2017). Agmatine ameliorates type 2 diabetes induced-Alzheimer’s disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology, 113, 467–479. https://doi.org/https://doi.org/10.1016/j.neuropharm.2016.10.029

Kim, N. H., & Kirsner, R. S. (2010). Nicotinamide in dermatology. Expert Review of Dermatology, 5(1), 23–29. https://doi.org/10.1586/edm.09.68

Knip, M., Douek, I. F., Moore, W. P. T., Gillmor, H. A., McLean, A. E. M., Bingley, P. J., & Gale, E. A. M. (2000). Safety of High-dose Nicotinamide: A Review. Diabetologia, 43, 1337–1345.

Lloyd-Jones, D. M. (2014). Niacin and HDL cholesterol–time to face facts. N Engl J Med, 371(3), 271–273.

MacKay, D., Hathcock, J., & Guarneri, E. (2012). Niacin: chemical forms, bioavailability, and health effects. Nutr Rev, 70(6), 357–366.

Matsui, A., Yin, Y., Yamanaka, K., Iwasaki, M., & Ashihara, H. (2007). Metabolic fate of nicotinamide in higher plants. Physiol Plant, 131(2), 191–200.

Mehmel, M., Jovanović, N., & Spitz, U. (2020). Nicotinamide riboside—the current state of research and therapeutic uses. Dalam Nutrients (Vol. 12, Nomor 6). MDPI AG. https://doi.org/10.3390/nu12061616

Minto, C., Vecchio, M. G., & Lamprecht Manfred and Gregori, D. (2017). Definition of a tolerable upper intake level of niacin: a systematic review and meta-analysis of the dose-dependent effects of nicotinamide and nicotinic acid supplementation. Nutr Rev, 75(6), 471–490.

Moreschi, E. C. P., Matos, J. R., & Almeida-Muradian, L. B. (2009). Thermal analysis of vitamin PP Niacin and niacinamide. Journal of Thermal Analysis and Calorimetry, 98(1), 161–164. https://doi.org/10.1007/s10973-009-0177-2

Navarrete-Sol’is, J., Castanedo-Cázares, J. P., Torres-Álvarez, B., Oros-Ovalle Cuauhtemoc and Fuentes-Ahumada, C., González Francisco Javier and Mart’inez-Ram’irez, J. D., & Moncada, B. (2011). A Double-Blind, Randomized Clinical Trial of Niacinamide 4% versus Hydroquinone 4% in the Treatment of Melasma. Dermatol Res Pract, 2011, 379173.

Nurjanah, Taufiqurrahman, & Muryanto, T. N. (2010). KOMPOSISI KIMIA DAN VITAMIN A, B1, B2, B3 DAGING IKAN GURAMI (Osphronemus gouramy) PADA BERBAGAI UKURAN. Jurnal Sumberdaya Perairan, 4(1), 10–13.

Oleg Kurnasov, Vasiliy Goral, Keri Colabroy, Svetlana Gerdes, Shubha Anantha, Andrei Osterman, & Tadhg P. Begley. (2003). NAD Biosynthesis: Identification of the Tryptophan to Quinolinate Pathway in Bacteria. Chemistry and Biology, 10, 1195–1204.

Önder, M. (2008). An Investigation of Efficacy of Topical Niacinamide for the Treatment of Mild and Moderate Acne Vulgaris. https://api.semanticscholar.org/CorpusID:73212541

Ramos-e-Silva, M., Celem, L. R., Ramos-e-Silva, S., & Fucci-da-Costa, A. P. (2013). Anti-aging cosmetics: facts and controversies. Clin Dermatol, 31(6), 750–758.

Reiche, L., Wojnarowska, F., & Mallon, E. (1998). Combination therapy with nicotinamide and tetracyclines for cicatricial pemphigoid: further support for its efficacy. Clin Exp Dermatol, 23(6), 254–257.

Rex, A., & Fink, H. (2008). Pharmacokinetic aspects of reduced nicotinamide adenine dinucleotide (NADH) in rats. Front Biosci, 13, 3735–3741.

Rolfe, H. M. (2014). A review of nicotinamide: treatment of skin diseases and potential side effects. J Cosmet Dermatol, 13(4), 324–328.

Rovito, H. A., & Oblong, J. E. (2013). Nicotinamide preferentially protects glycolysis in dermal fibroblasts under oxidative stress conditions. British Journal of Dermatology, 169(SUPPL.2), 15–24. https://doi.org/10.1111/bjd.12365

Ryu, D., Zhang, H., Ropelle, E. R., Sorrentino, V., Mázala, D. A. G., Mouchiroud, L., Marshall, P. L., Campbell, M. D., Ali, A. S., Knowels, G. M., Bellemin, S., Iyer, S. R., Wang, X., Gariani, K., Sauve, A. A., Cantó, C., Conley, K. E., Walter, L., Lovering, R. M., … Auwerx, J. (2016). NAD repletion improves muscle function in muscular dystrophy and counters global PARylation. Science Translational Medicine, 8(361), 361ra139-361ra139. https://doi.org/10.1126/scitranslmed.aaf5504

Savvidou, S. (2014). Pellagra: a non-eradicated old disease. Clin Pract, 4(1), 637.

Schandelmaier, S., Briel, M., Saccilotto Ramon and Olu, K. K., Arpagaus, A., Hemkens, L. G., & Nordmann, A. J. (2017a). Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst Rev, 6(6), CD009744.

Schandelmaier, S., Briel, M., Saccilotto Ramon and Olu, K. K., Arpagaus, A., Hemkens, L. G., & Nordmann, A. J. (2017b). Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst Rev, 6(6), CD009744.

Shahbazian, H., Zafar Mohtashami, A., Ghorbani, A., Abbaspour, M. R., Belladi Musavi, S. S., Hayati, F., & Lashkarara, G. R. (2011). Oral nicotinamide reduces serum phosphorus, increases HDL, and induces thrombocytopenia in hemodialysis patients: a double-blind randomized clinical trial. Nefrologia, 31(1), 58–65.

Sharma, C., Donu, D., & Cen, Y. (2022). Emerging Role of Nicotinamide Riboside in Health and Diseases. Dalam Nutrients (Vol. 14, Nomor 19). MDPI. https://doi.org/10.3390/nu14193889

Shats, I., Williams, J. G., Liu, J., Makarov, M. V., Wu, X., Lih, F. B., Deterding, L. J., Lim, C., Xu, X., Randall, T. A., Lee, E., Li, W., Fan, W., Li, J. L., Sokolsky, M., Kabanov, A. V., Li, L., Migaud, M. E., Locasale, J. W., & Li, X. (2020). Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway. Cell Metabolism, 31(3), 564-579.e7. https://doi.org/10.1016/j.cmet.2020.02.001

Soma, Y., Kashima, M., Imaizumi, A., Takahama, H., Kawakami, T., & Mizoguchi, M. (2005). Moisturizing effects of topical nicotinamide on atopic dry skin. International Journal of Dermatology, 44. https://api.semanticscholar.org/CorpusID:25760142

Stone, N. J., Robinson, J. G., Lichtenstein Alice H and Bairey Merz, C. N., Blum, C. B., Eckel Robert H and Goldberg, A. C., Gordon, D., Levy, D., Lloyd-Jones, D. M., McBride, P., Schwartz, J. S., Shero, S. T., Smith Jr, S. C., Watson, K., Wilson, P. W. F., & American College of Cardiology/American Heart Association Task Force on Practice Guidelines. (2013). 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, 63(25 Pt B), 2889–2934.

Surjana, D., Halliday, G. M., Martin, A. J., Moloney, F. J., & Damian, D. L. (2012). Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials. J Invest Dermatol, 132(5), 1497–1500.

Tamagnone, G., & DeMaria, R. (1967). New method for isolating nicotinamide-adenine dinucleotide (NAD) from baker’s yeast. Int Z Vitaminforsch, 37(3), 367–370.

Tanno, O., Ota, Y., Kitamura, N., Katsube, T., & Inoue, S. (2000). Nicotinamide increases biosynthesis of ceramides as well as other stratum corneum lipids to improve the epidermal permeability barrier. Br J Dermatol, 143(3), 524–531.

Tong, D., Schiattarella, G. G., Jiang, N., Altamirano, F., Szweda, P. A., Elnwasany, A., Lee, D. I., Yoo, H., Kass, D. A., Szweda, L. I., Lavandero, S., Verdin, E., Gillette, T. G., & Hill, J. A. (2021). NAD+ Repletion Reverses Heart Failure with Preserved Ejection Fraction. Circulation Research, 128(11), 1629–1641. https://doi.org/10.1161/CIRCRESAHA.120.317046

Trammell, S. A. J., Schmidt, M. S., Weidemann, B. J., Redpath, P., Jaksch, F., Dellinger, R. W., Li, Z., Abel, E. D., Migaud, M. E., & Brenner, C. (2016). Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nature Communications, 7. https://doi.org/10.1038/ncomms12948

Trammell, S. A. J., Weidemann, B. J., Chadda, A., Yorek, M. S., Holmes, A., Coppey, L. J., Obrosov, A., Kardon, R. H., Yorek, M. A., & Brenner, C. (2016). Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Scientific Reports, 6. https://doi.org/10.1038/srep26933

Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M. S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., & Duplus, E. (2017). Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration. The FASEB Journal, 31(12), 5440–5452. https://doi.org/https://doi.org/10.1096/fj.201700221RR

Wohlrab, J., & Kreft, D. (2014). Niacinamide-mechanisms of action and its topical use in dermatology. Dalam Skin Pharmacology and Physiology (Vol. 27, Nomor 6, hlm. 311–315). S. Karger AG. https://doi.org/10.1159/000359974

Wozniacka, A., Wieczorkowska, M., Gebicki, J., & Sysa-Jedrzejowska, A. (2005). Topical application of 1-methylnicotinamide in the treatment of rosacea: a pilot study. Clin Exp Dermatol, 30(6), 632–635.

Zheng, M., Schultz, M. B., & Sinclair, D. A. (2022). NAD+ in COVID-19 and viral infections. Dalam Trends in Immunology (Vol. 43, Nomor 4, hlm. 283–295). Elsevier Ltd. https://doi.org/10.1016/j.it.2022.02.001

Zhou, S. S., Li, D., Sun, W. P., Guo, M., Lun, Y. Z., Zhou, Y. M., Xiao, F. C., Jing, L. X., Sun, S. X., Zhang, L. Bin, Luo, N., Bian, F. N., Zou, W., Dong, L. Bin, Zhao, Z. G., Li, S. F., Gong, X. J., Yu, Z. G., Sun, C. Bin, … Li, Z. N. (2009). Nicotinamide overload may play a role in the development of type 2 diabetes. World Journal of Gastroenterology, 15(45), 5674–5684. https://doi.org/10.3748/wjg.15.5674




DOI: https://doi.org/10.30743/cheds.v9i1.11240

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Zahrotun Nafisah, Sri Yulandari Simangunsong, Junita Dongoran, Putri Sulistiawati

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

CHEDS: Journal of Chemistry, Education, and Science

Program Studi Pendidikan Kimia, FKIP - Universitas Islam Sumatera Utara
Kampus Induk UISU Jl. Sisingamangaraja XII Teladan, Medan 
Email: pend.kimia@fkip.uisu.ac.id | cheds@fkip.uisu.ac.id

Creative Commons License